دسته بندی | ساخت و تولید |
فرمت فایل | doc |
حجم فایل | 60 کیلو بایت |
تعداد صفحات فایل | 84 |
تحقیق بررسی ریخته گری فولاد،ذوب فلزات در 84 صفحه ورد قابل ویرایش
فهرست مطالب
مقدمه ?
?-?- معرفی و به کار گیری سوپر آلیاژها ?
?-?- مروری کوتاه بر فلزات با استحکام در دمای بالا ??
?-?- اصول متالورژی سوپر آلیاژها ??
?-?- بعضی از ویژگیها و خواص سوپر آلیاژها ??
?-?- کاربردها ??
?-?- کلیات ??
?-?- شکل سوپر آلیاژها ??
?-?- دمای کاری سوپرآلیاژها ??
?-?- مقایسه سوپر آلیاژهای ریخته و کار شده ??
?-?-?- سوپر آلیاژهای کار شده ??
?-?-?- سوپر آلیاژهای ریخته ??
?-?- خواص سوپرآلیاژها ??
?-?-?- کلیات ??
?-?-?- سوپر آلیاژهای پیشرفته ??
?-?-?- خواص مکانیکی و کاربرد سوپرآلیاژها ??
?-?- انتخاب سوپرآلیاژها ??
?-?-?- کاربردهای آلیاژهای کار شده در دمای متوسط ??
?-?-?- کاربردهای آلیاژهای ریخته در دمای بالا ??
?-?- گروهها، ساختارهای بلوری و فازها ??
?-?-?- گروههای سوپرآلیاژها ??
?-?-?- ساختار بلوری ??
?-?-?- فاز در سوپرآلیاژها ??
?-?- مقدمهای بر گروههای آلیاژی ??
?-?-?- سوپر آلیاژهای پایه آهن- نیکل ??
?-?-?- سوپرآلیاژهای پایه نیکل ??
?-?-?- سوپرآلیاژهای پایه کبالت ??
?-?- عناصر آلیاژی و اثرات آنها بر ریزساختار سوپرآلیاژها ??
?-?-?- عناصر اصلی در سوپرآلیاژها ??
?-?-?- عناصر جزئی مفید در سوپرآلیاژها ??
?-?-?- عناصر تشکیل دهنده فازهای ترد ??
?-?-?- عناصر ناخواسته و مضر در سوپرآلیاژها ??
?-?-?- عناصر ایجاد کننده مقاومت خوردگی و اکسیداسیون ??
?-?- استحکام دهی سوپرآلیاژها ??
?-?-?- رسوبها و استحکام ??
?-?-?- فاز ??
?-?-?- فاز ??
?-?-?- کاربیدها ??
?-?-?- کاربیدهای M7C3 44
3-4-6- بوریدها و عناصر جزئی مفید دیگر (به جز کربن) ??
?-?- تاثیر فرآیند بر بهبود ریز ساختار ??
ذوب و تبدیل ??
?-?- فرآیند EAF/AOD 47
4-1-1- تشریح فرآیند EAF/AOD 47
4-2- عملیات کوره قوس الکتریکی/ کربن زدایی با اکسیژن و آرگن (EAF/AOD) 50
4-2-1- ترکیب شیمیایی آلیاژ و آماده کردن شارژ ??
?-?-?- بارگذاری EAF 52
4-2-3- کوره قوس الکتریک ??
?-?-?- تانک AOD 55
4-2-5- پاتیل ریختهگری ??
?-?- مروری بر ذوب القایی در خلاء (VIM) 58
4-3-2- تشریح فرآیند VIM 59
4-4- عملیات ذوب القایی در خلاء ??
?-?-?- عملیات ذوب القایی در خلاء ??
?-?-?- کوره القائی تحت خلاء ??
?-?-?- سیستمهای ریختهگری ??
?-?-?- عملیات ذوب القایی در خلاء ??
?-?- مروری بر ذوب مجدد ??
?-?-?- تشریح فرآیند ذوب مجدد در خلاؤء با قوس الکتریکی (VAR) 72
4-5-3- تشریح فرآیند مجدد با سرباره الکتریکی (ESR) 73
4-6- عملیات ذوب مجدد در خلاء با قوس الکتریکی ??
?-?-?- کوره VAR 74
4-6-2- عملیات ذوب مجدد در خلاء با قوس الکتریکی ??
?-?-?- کنترل ذوب مجدد در خلاء با قوس الکتریکی ??
?-?- عملیات ذوب مجدد با سربار الکتریکی (ESR) 79
4-7-1- کوره ESR 79
4-7-2- عملیات کوره ذوب مجدد با سرباره الکتریکی ??
?-?-?- کنترل ذوب مجدد با سرباره الکتریکی ??
?- انتخاب سرباره ??
?-?- محصولات ذوب سه مرحلهای ??
?-?-?- فرآیند ذوب سه مرحلهای شمش ??
?-?- تبدیل شمش و محصولات نورد ??
?-?-?- همگنسازی توزیع عنصر محلول در شمشها ??
?-?-?- آهنگری محصول نیمه تمام ??
?-?-?- آهنگری محصول نیمه تمام آلیاژ IN-718 91
4-9-5- اکستروژن ??
?-?-?- نورد ??
?-?-?- دسترسی به محصولات نورد ??
مقدمه
طراحان نیاز فراوانی به مواد مستحکمتر و مقاومتر در برابر خوردگی دارند. فولادهای زنگ نزن توسعه داده شده و به کار رفته در دهههای دوم و سوم قرن بیستم میلادی، نقطه شروعی برای برآورده شدن خواستههای مهندسی در دماهای بالا بودند. بعداً معلوم شد که این مواد تحت این شرایط دارای استحکام محدودی هستند. جامعه متالوژی با توجه به نیازهای روز افزون بوجود آمده، با ساخت جایگزین فولاد زنگ نزن که سوپر آلیاژ نامیده شد به این تقاضا پاسخ داد. البته قبل از سوپر آلیاژها مواد اصلاح شده پایه آهن به وجود آمدند، که بعدها نام سوپر آلیاژ به خود گرفتند.
با شروع و ادامه جنگ جهانی دوم توربینهای گازی تبدیل به یک محرک قوی برای اختراع و کاربرد آلیاژها شدند. در سال 1920 افزودن آلومینیوم و تیتانیوم به آلیاژهای از نوع نیکروم به عنوان اختراع به ثبت رسید، ولی صنعت سوپر آلیاژها با پذیرش آلیاژ کبالت (ویتالیوم) برای برآورده کردن نیاز به استحکام در دمای بالا در موتورهای هواپیما پدیدار شدند. بعضی آلیاژهای نیکل- کروم (اینکونل و نیمونیک) مانند سیم نسوز کم و بیش وجود داشتند و کار دستیابی به فلز قویتر در دمای بالاتر برای رفع عطش سیری ناپذیر طراحان ادامه یافت و هنوز هم ادامه دارد.
1-1- معرفی و به کار گیری سوپر آلیاژها
سوپر آلیاژها؛ آلیاژهای پایه نیکل، پایه آهن- نیکل و پایه کبالت هستند که عموماً در دماهای بالاتر از oC540 استفاده میشوند. سوپر آلیاژهای پایه آهن- نیکل مانند آلیاژ IN-718 از فنآوری فولادهای زنگ نزن توسعه یافته و معمولاً به صورت کار شده میباشند. سوپر آلیاژهای پایه نیکل و پایه کبالت بسته به نوع کاربرد و ترکیب شیمیایی میتوانند به صورت ریخته یا کار شده باشند.
در شکل 1-1 رفتار تنش- گسیختگی سه گروه آلیاژی با یکدیگر مقایسه شدهاند (سوپر آلیاژهای پایه آهن- نیکل، پایه نیکل و پایه کبالت). در جدولهای 1-1 و 1-2 فهرستی از سوپر آلیاژها و ترکیب شیمیایی آنها آورده شده است.
سوپر آلیاژهای دارای ترکیب شیمیایی مناسب را میتوان با آهنگری و نورد به اشکال گوناگون در آورد. ترکیبهای شیمیایی پر آلیاژتر معمولاً به صورت ریختهگری میباشند. ساختارهای سرهم بندی شده را میتوان با جوشکاری یا لحیمکاری بدست آورد، اما ترکیبهای شیمیایی که دارای مقادیر زیادی از فازهای سخت کننده هستند، به سختی جوشکاری میشوند. خواص سوپر آلیاژها را با تنظیم ترکیب شیمیایی و فرآیند (شامل عملیات حرارتی) میتوان کنترل کرد و استحکام مکانیکی بسیار عالی درمحصول تمام شده بدست آورد.
1-2- مروری کوتاه بر فلزات با استحکام در دمای بالا
استحکام اکثر فلزات در دماهای معمولی به صورت خواص مکانیکی کوتاه مدت مانند استحکام تسلیم یا نهایی اندازهگیری و گزارش میشود. با افزایش دما به ویژه در دماهای بالاتر از 50 درصد دمای نقطه ذوب (بر حسب دمای مطلق) استحکام باید بر حسب زمان انجام اندازهگیری بیان شود. اگر در دماهای بالا باری به فلز اعمال شود که به طور قابل ملاحظهای کمتر از بار منجر به تسلیم در دمای اتاق باشد، دیده خواهد شد که فلز به تدریج با گذشت زمان ازدیاد طول پیدا میکند. این ازدیاد طول وابسته به زمان خزش نامیده میشود و اگر به اندازه کافی ادامه یابد به شکست (گسیختگی) قطعه منجر خواهد شد. استحکام خزش یا استحکام گسیختگی (در اصطلاح فنی استحکام گسیختگی خزش یا استحکام گسیختگی تنشی نامیده میشود) همانند استحکامهای تسلیم و نهایی در دمای اتاق یکی از مولفههای مورد نیاز برای فهم رفتار مکانیکی ماده است. در دماهای بالا استحکام خستگی فلز نیز کاهش پیدا میکند. بنابراین برای ارزیابی توانایی فلز با در نظر گرفتن دمای کار و بار اعمال شده لازم است، استحکامهای تسلیم و نهایی، استحکام خزش، استحکام گسیختگی و استحکام خستگی معلوم باشند. ممکن است به خواص مکانیکی مرتبط دیگری مانند مدول دینامیکی، نرخ رشد ترک و چقرمگی شکست نیز نیاز باشد. خواص فیزیکی ماده مانند ضریب انبساط حرارتی، جرم حجمی و غیره فهرست خواص را تکمیل میکنند.
1-3- اصول متالورژی سوپر آلیاژها
سوپر آلیاژهای پایه آهن، نیکل و کبالت معمولاً دارای ساختار بلوری با شکل مکعبی با سطوح مرکزدار (FCC) هستند. آهن و کبالت در دمای محیط دارای ساختار FCC نیستند. هر دو فلز در دماهای بالا یا در حضور عناصر آلیاژی دیگر دگرگونی یافته و شبکه واحد آنها به FCC تبدیل میشود. در مقابل، ساختمان بلوری نیکل در همه دماها به شکل FCC است. حد بالایی این عناصر در سوپر آلیاژها توسط دگرگونی فازها و پیدایش فازهای آلوتروپیک تعیین نمیشود بلکه توسط دمای ذوب موضعی آلیاژها و انحلال فازهای استحکام یافته تعیین میگردد. در ذوب موضعی بخشی از آلیاژ که پس از انجماد ترکیب شیمیایی تعادلی نداشته است در دمایی کمتر از مناطق مجاور خود ذوب میشود. همه آلیاژها دارای یک محدوده دمایی ذوب شدن هستند و عمل ذوب شدن در دمای ویژهای صورت نمیگیرد، حتی اگر جدایش غیر تعادلی عناصر آلیاژی وجود نداشته باشد. استحکام سوپر آلیاژها نه تنها بوسیله شبکه FCC و ترکیب شیمیایی آن، بلکه با حضور فازهای استحکام دهنده ویژهای مانند رسوبها افزایش مییابد. کار انجام شده بر روی سوپر آلیاژ (مانند تغییر شکل سرد) نیز استحکام را افزایش میدهد، اما این استحکام به هنگام قرارگیری فلز در دماهای بالا حذف میشود.
تمایل به دگرگونی از فاز FCC به فاز پایدارتری در دمای پایین وجود دارد که گاهی در سوپر آلیاژهای کبالت اتفاق میافتد. شبکه FCC سوپر آلیاژ قابلیت انحلال وسیعی برای بعضی عناصر آلیاژی دارد و رسوب فازهای استحکام دهنده (در سوپر آلیاژهای پایه آهن- نیکل و پایه نیکل) انعطافپذیری بسیار عالی آلیاژ را به همراه دارد. چگالی آهن خالص gr/cm3 87/7 و چگالی نیکل و کبالت تقریباً gr/cm3 9/8 میباشد. چگالی سوپر آلیاژهای پایه آهن- نیکل تقریباً gr/cm3 3/8-9/7 پایه کبالت gr/cm3 4/9-3/8 و پایه نیکل gr/cm3 9/8-8/7 است.
چگالی سوپر آلیاژها به مقدار عناصر آلیاژی افزوده شده بستگی دارد. عناصر آلیاژی Cr, Ti و Al چگالی را کاهش و Re, W و Ta آنرا افزایش میدهند. مقاومت به خوردگی سوپر آلیاژها نیز به عناصر آلیاژی افزوده شده به ویژه Cr, Al و محیط بستگی دارد.
دمای ذوب عناصر خالص نیکل، کبالت و آهن به ترتیب 1453 و 1495 و 1537 درجه سانتیگراد است. دمای ذوب حداقل (دمای ذوب موضعی) و دامنه ذوب سوپر آلیاژها، تابعی از ترکیب شیمیایی و فرآیند اولیه است. به طور کلی دمای ذوب موضعی سوپر آلیاژهای پایه کبالت نسبت به سوپر آلیاژهای پایه نیکل بیشتر است. سوپر آلیاژهای پایه نیکل ممکن است در دمای oC1204 از خود ذوب موضعی نشان دهند. انواع پیشرفته سوپر آلیاژهای پایه نیکل تک بلور دارای مقادیر محدودی از عناصر کاهش دهنده دمای ذوب هستند و به همین لحاظ، دارای دمای ذوب موضعی برابر یا کمی بیشتر از سوپر آلیاژهای پایه کبالت هستند.
4-2-3- کوره قوس الکتریک
یک طرح عمومی از کوره EAF در شکل 4-1 نشان داده شده است. ظرفیت کوره EAF باید با ظرفیت تانک AOD یکسان باشد. عملیات EAF/AOD سوپرآلیاژها با ظرفیت Kg 9000 میتواند انجام گیرد، اما اکثراً ظرفیت تولید این روش در حدود kg36000 انتخاب میشود.
دیواره کوره فولادی مدور با سیستم آبگرد و لایه نسوز آجری است. انتخاب آجرهای نسوز به نوع آلیاژ و طراحی کوره بستگی دارد. هزینه نسوز کاری یک کوره متوسط 18 تنی تقریباً 18 هزار دلار است. قسمت پایین کوره ثابت و سقف آن متحرک است. سقف کوره میتواند در یک صفحه افقی حرکت کرده و کاملاً از کوره دور شود تا بار به درون آن ریخته شود. سقف کوره دارای سه الکترود گرافیتی است، که در داخل کوره قرار میگیرند. در قسمت جلو دیواره کوره مجرای خروج مذاب و در قسمت عقب آن دریچه سربارهگیری قرار دارد. کوره قوس تقریباً در داخل یک چاله قرار دارد، به نحوی که مجرای خروج مذاب و دریچه سربارهگیری تقریباً در کف کارگاه قرار میگیرند. وجود چاله اجازه میدهد، که پاتیل حمل مذاب و پاتیل سرباره میتوانند تا نزدیکی کوره آورده شوند. سطح این پاتیلها پایینتر از سطح مجراها قرار میگیرند. کوره قابلیت چرخش تا 90 درجه به طرف جلو را دارد، تا فلز مذاب کاملاً به درون پاتیل ریخته شود. زاویه چرخش کوره به طرف عقب به منظور سربارهگیری حداکثر 20 درجه است.
به دلیل پایین بودن چگالی مواد اولیه نمیتوان همه آن را یکباره به کوره بار کرد. ابتدا بخشی از بار به کوره اضافه میشود و سقف کوره مجدداً در جای خود قرار میگیرد. الکترودها به طرف شارژ حرکت میکنند و قوس الکتریکی بین بار و الکترود ایجاد میشود. ابتدا قوس کم ولتاژ ایجاد میشود. با شروع به ذوب شدن بار الکترودها پایینتر میروند و ولتاژ جریان افزایش مییابد. تا قوسی با طول بیشتر ایجاد گردد و در نتیجه بازدهی ذوب افزایش یابد. عملیات مزبور تا ذوب شدن همه بار ادامه پیدا میکند. سقف کوره کنار میرود و باقی مانده بار به کوره ریخته میشود (بارگذاری مجدد)، پس از بارگذاری مجدد، سقف کوره به محل قبلی خود برگشته و تا زمانی که کل بار ذوب شود، قوس بر قرار میشود. پس از آن گرم کردن ذوب با دمش اکسیژن و آرگن میتواند انجام شود.
اکسیدهایی که در این مرحله به وجود میآیند، ممکن است بسیار خورنده باشند و به لایه نسوز کوره آسیب وارد کنند. ساییدگی نسوزها در همه ذوبها اتفاق میافتد، ولی برای جلوگیری از آسیبهای موضعی شدید نسوز دیواره، معمولاً آهک به بار کوره اضافه میکنند. آهک نقش سرباره ساز دارد و سرباره ایجاد شده در کوره به صورت دستی از آن گرفته میشود. برای سربارهگیری کوره به سمت عقب چرخیده و سرباره جمعآوری شده، از دریچه سربارهگیری خارج میشود. این عمل در صورت نیاز و بسته به نوع بار قابل تکرار است.
پس از آنکه بخش عمدهای از سرباره تشکیل شده تخلیه گردید، یک نمونه آنالیز شیمیایی از ذوب تهیه میشود. بر مبنای ترکیب شیمیایی بدست آمده از این نمونه ممکن است دمش گاز ادامه یابد یا تعدادی از عناصر آلیاژی برای تنظیم ترکیب شیمیایی قبل از انتقال به واحد AOD به آن افزوده شود. زمان تقریبی مرحله EAF فرآیند EAF/AOD تقریباً 1 تا 3 ساعت است. پس از آماده شدن ذوب آن را به درون پاتیل انتقال مذاب میریزند. پاتیل انتقال (یک ظرف نسوز کاری شده با مجرای خروج مذاب) در مقابل کوره قوس قرار داده میشود. کوره میچرخد و محتویات خود را به درون پاتیل میریزد. ممکن است پاتیل با MgO نسوزکای شده باشد، تا با سرباره آهک مطابقت داشته باشد. امکان دارد موقع سربارهگیری ذرات سرباره بر روی مذاب شناور باقی به ماند. قبل از ریختن مذاب برای جلوگیری از افت دمای مذاب در پاتیل، آن را پیش گرم میکنند. پاتیل انتقال مذاب به تانک AOD برده میشود و مذاب به درون تانک ریخته میشود.
4-2-4- تانک AOD
در شکل 4-6 تانک AOD نشان داده شده است. دیواره تانک فولادی و نسوز کاری شده است. نمای بیرونی تانک شبیه به مخلوط کنهای بتن با تنه مدور و سر مخروطی است که در محل قرارگیری خود میتواند بر روی یک صفحه عمودی چرخش نماید. ظرفیت تانک متناسب با ظرفیت کوره EAF و معمولاً کمتر از 36 تن است. یکی از مشخصات ویژه تانک AOD این است که در کف آن تعدادی لوله برای دمش مخلوط اکسیژن و آرگن وجود دارد. این لوله تعدادی لوله هم مرکز هستند که از لوله مرکزی مخلوط آرگن و اکسیژن و از لوله بیرونی فقط گاز خنثی (معمولاً آرگن) برای خنک کردن انتهای لوله مرکزی دمیده میشود.
لایه نسوز تانک AOD شبیه نسوز کوره EAF است و در طی فرایند فرسوده میشود. کنترل درجه قلیایی سرباره یک عامل کلیدی برای اطمینان از آسیب ندیدن لایه نسوز از طرف سرباره میباشد. اولین مرحله در تانک AOD کربن زدایی مذاب است. اگر درون مذاب اکسیژن خالصی دمیده شود، نتیجه کار نه تنها کربن زدایی مذاب نخواهد شد بلکه کروم بیشتری به اکسید کروم تبدیل خواهد شد. برای اقتصادی کردن واکنش کربنزدایی، فشار جزئی اکسیژن دمیده شده به مذاب با اضافه کردن آرگن به آن کاهش داده میشود تا از مقدار کرومی که به اکسید کروم تبدیل میشود، کاسته شود. وقتی که مقدار کربن مذاب بالا باشد، نسبت آرگن به اکسیژن در مخلوط گازی 3 به 1 در نظر گرفته میشود. با کاهش مقدار کربن مقدار آرگن باید افزایش یابد. با نزدیک شدن به مرحله کربن زدایی کامل نسبت آرگن به اکسیژن تقریباً 6 به 1 در نظر گرفته میشود.
حرارتی که در اثر واکنش کربن زدایی به وجود میآید، مقداری از کروم را اکسید میکند. در اثر دمش گاز، سیلسیم نیز اکسید میشود ولی حرارت ناشی از اکسیداسیون آن ناچیز است و اثر کمی در گرم کردن مذاب دارد. یادآوری این موضوع اهمیت دارد که تانک AOD فاقد منبع انرژی حرارتی خارجی سات و دمای آن در اثر واکنشهای گرمازا افزایش پیدا میکند. چنانچه لازم باشد دمای مذاب پایین آورده شود، از قراضه جامد استفاده میشود. یکنواخت نگه داشتن دمای مذاب از لحاظ اقتصادی اهمیت دارد، زیار تبدیل عناصر آلیاژی با ارزش (به ویژه کروم و نیوبیوم) به سرباره تحت تاثیر دما انجام میگیرد. از فوق گداز شدن مذاب باید جلوگیری کرد، زیرا خنک کردن و گرم کردن مجدد آن زمان بر بوده و بازیابی کامل عناصر آلیاژی موجود در سرباره را دشوار میسازد.
در طی فرآیند کربنزدایی به مذاب آهک اضافه میشود. آهک اضافه شده در مرحله دمش گاز کاملاً با مذاب مخلوط شده و درجه بالایی از گوگرد زدایی مذاب به دست میآید. CaS حاصل از گوگردزدائی به صورت سرباره در میآید. چنانچه پس از نمونهگیری از ترکیب شیمیایی، کربنزدایی تا سطح مورد نظر انجام شده باشد، مرحله بازیابی عملیات AOD شروع میشود.
دسته بندی | ساخت و تولید |
بازدید ها | 2 |
فرمت فایل | doc |
حجم فایل | 60 کیلو بایت |
تعداد صفحات فایل | 84 |
تحقیق بررسی ریخته گری فولاد،ذوب فلزات در 84 صفحه ورد قابل ویرایش
فهرست مطالب
مقدمه ?
?-?- معرفی و به کار گیری سوپر آلیاژها ?
?-?- مروری کوتاه بر فلزات با استحکام در دمای بالا ??
?-?- اصول متالورژی سوپر آلیاژها ??
?-?- بعضی از ویژگیها و خواص سوپر آلیاژها ??
?-?- کاربردها ??
?-?- کلیات ??
?-?- شکل سوپر آلیاژها ??
?-?- دمای کاری سوپرآلیاژها ??
?-?- مقایسه سوپر آلیاژهای ریخته و کار شده ??
?-?-?- سوپر آلیاژهای کار شده ??
?-?-?- سوپر آلیاژهای ریخته ??
?-?- خواص سوپرآلیاژها ??
?-?-?- کلیات ??
?-?-?- سوپر آلیاژهای پیشرفته ??
?-?-?- خواص مکانیکی و کاربرد سوپرآلیاژها ??
?-?- انتخاب سوپرآلیاژها ??
?-?-?- کاربردهای آلیاژهای کار شده در دمای متوسط ??
?-?-?- کاربردهای آلیاژهای ریخته در دمای بالا ??
?-?- گروهها، ساختارهای بلوری و فازها ??
?-?-?- گروههای سوپرآلیاژها ??
?-?-?- ساختار بلوری ??
?-?-?- فاز در سوپرآلیاژها ??
?-?- مقدمهای بر گروههای آلیاژی ??
?-?-?- سوپر آلیاژهای پایه آهن- نیکل ??
?-?-?- سوپرآلیاژهای پایه نیکل ??
?-?-?- سوپرآلیاژهای پایه کبالت ??
?-?- عناصر آلیاژی و اثرات آنها بر ریزساختار سوپرآلیاژها ??
?-?-?- عناصر اصلی در سوپرآلیاژها ??
?-?-?- عناصر جزئی مفید در سوپرآلیاژها ??
?-?-?- عناصر تشکیل دهنده فازهای ترد ??
?-?-?- عناصر ناخواسته و مضر در سوپرآلیاژها ??
?-?-?- عناصر ایجاد کننده مقاومت خوردگی و اکسیداسیون ??
?-?- استحکام دهی سوپرآلیاژها ??
?-?-?- رسوبها و استحکام ??
?-?-?- فاز ??
?-?-?- فاز ??
?-?-?- کاربیدها ??
?-?-?- کاربیدهای M7C3 44
3-4-6- بوریدها و عناصر جزئی مفید دیگر (به جز کربن) ??
?-?- تاثیر فرآیند بر بهبود ریز ساختار ??
ذوب و تبدیل ??
?-?- فرآیند EAF/AOD 47
4-1-1- تشریح فرآیند EAF/AOD 47
4-2- عملیات کوره قوس الکتریکی/ کربن زدایی با اکسیژن و آرگن (EAF/AOD) 50
4-2-1- ترکیب شیمیایی آلیاژ و آماده کردن شارژ ??
?-?-?- بارگذاری EAF 52
4-2-3- کوره قوس الکتریک ??
?-?-?- تانک AOD 55
4-2-5- پاتیل ریختهگری ??
?-?- مروری بر ذوب القایی در خلاء (VIM) 58
4-3-2- تشریح فرآیند VIM 59
4-4- عملیات ذوب القایی در خلاء ??
?-?-?- عملیات ذوب القایی در خلاء ??
?-?-?- کوره القائی تحت خلاء ??
?-?-?- سیستمهای ریختهگری ??
?-?-?- عملیات ذوب القایی در خلاء ??
?-?- مروری بر ذوب مجدد ??
?-?-?- تشریح فرآیند ذوب مجدد در خلاؤء با قوس الکتریکی (VAR) 72
4-5-3- تشریح فرآیند مجدد با سرباره الکتریکی (ESR) 73
4-6- عملیات ذوب مجدد در خلاء با قوس الکتریکی ??
?-?-?- کوره VAR 74
4-6-2- عملیات ذوب مجدد در خلاء با قوس الکتریکی ??
?-?-?- کنترل ذوب مجدد در خلاء با قوس الکتریکی ??
?-?- عملیات ذوب مجدد با سربار الکتریکی (ESR) 79
4-7-1- کوره ESR 79
4-7-2- عملیات کوره ذوب مجدد با سرباره الکتریکی ??
?-?-?- کنترل ذوب مجدد با سرباره الکتریکی ??
?- انتخاب سرباره ??
?-?- محصولات ذوب سه مرحلهای ??
?-?-?- فرآیند ذوب سه مرحلهای شمش ??
?-?- تبدیل شمش و محصولات نورد ??
?-?-?- همگنسازی توزیع عنصر محلول در شمشها ??
?-?-?- آهنگری محصول نیمه تمام ??
?-?-?- آهنگری محصول نیمه تمام آلیاژ IN-718 91
4-9-5- اکستروژن ??
?-?-?- نورد ??
?-?-?- دسترسی به محصولات نورد ??
مقدمه
طراحان نیاز فراوانی به مواد مستحکمتر و مقاومتر در برابر خوردگی دارند. فولادهای زنگ نزن توسعه داده شده و به کار رفته در دهههای دوم و سوم قرن بیستم میلادی، نقطه شروعی برای برآورده شدن خواستههای مهندسی در دماهای بالا بودند. بعداً معلوم شد که این مواد تحت این شرایط دارای استحکام محدودی هستند. جامعه متالوژی با توجه به نیازهای روز افزون بوجود آمده، با ساخت جایگزین فولاد زنگ نزن که سوپر آلیاژ نامیده شد به این تقاضا پاسخ داد. البته قبل از سوپر آلیاژها مواد اصلاح شده پایه آهن به وجود آمدند، که بعدها نام سوپر آلیاژ به خود گرفتند.
با شروع و ادامه جنگ جهانی دوم توربینهای گازی تبدیل به یک محرک قوی برای اختراع و کاربرد آلیاژها شدند. در سال 1920 افزودن آلومینیوم و تیتانیوم به آلیاژهای از نوع نیکروم به عنوان اختراع به ثبت رسید، ولی صنعت سوپر آلیاژها با پذیرش آلیاژ کبالت (ویتالیوم) برای برآورده کردن نیاز به استحکام در دمای بالا در موتورهای هواپیما پدیدار شدند. بعضی آلیاژهای نیکل- کروم (اینکونل و نیمونیک) مانند سیم نسوز کم و بیش وجود داشتند و کار دستیابی به فلز قویتر در دمای بالاتر برای رفع عطش سیری ناپذیر طراحان ادامه یافت و هنوز هم ادامه دارد.
1-1- معرفی و به کار گیری سوپر آلیاژها
سوپر آلیاژها؛ آلیاژهای پایه نیکل، پایه آهن- نیکل و پایه کبالت هستند که عموماً در دماهای بالاتر از oC540 استفاده میشوند. سوپر آلیاژهای پایه آهن- نیکل مانند آلیاژ IN-718 از فنآوری فولادهای زنگ نزن توسعه یافته و معمولاً به صورت کار شده میباشند. سوپر آلیاژهای پایه نیکل و پایه کبالت بسته به نوع کاربرد و ترکیب شیمیایی میتوانند به صورت ریخته یا کار شده باشند.
در شکل 1-1 رفتار تنش- گسیختگی سه گروه آلیاژی با یکدیگر مقایسه شدهاند (سوپر آلیاژهای پایه آهن- نیکل، پایه نیکل و پایه کبالت). در جدولهای 1-1 و 1-2 فهرستی از سوپر آلیاژها و ترکیب شیمیایی آنها آورده شده است.
سوپر آلیاژهای دارای ترکیب شیمیایی مناسب را میتوان با آهنگری و نورد به اشکال گوناگون در آورد. ترکیبهای شیمیایی پر آلیاژتر معمولاً به صورت ریختهگری میباشند. ساختارهای سرهم بندی شده را میتوان با جوشکاری یا لحیمکاری بدست آورد، اما ترکیبهای شیمیایی که دارای مقادیر زیادی از فازهای سخت کننده هستند، به سختی جوشکاری میشوند. خواص سوپر آلیاژها را با تنظیم ترکیب شیمیایی و فرآیند (شامل عملیات حرارتی) میتوان کنترل کرد و استحکام مکانیکی بسیار عالی درمحصول تمام شده بدست آورد.
1-2- مروری کوتاه بر فلزات با استحکام در دمای بالا
استحکام اکثر فلزات در دماهای معمولی به صورت خواص مکانیکی کوتاه مدت مانند استحکام تسلیم یا نهایی اندازهگیری و گزارش میشود. با افزایش دما به ویژه در دماهای بالاتر از 50 درصد دمای نقطه ذوب (بر حسب دمای مطلق) استحکام باید بر حسب زمان انجام اندازهگیری بیان شود. اگر در دماهای بالا باری به فلز اعمال شود که به طور قابل ملاحظهای کمتر از بار منجر به تسلیم در دمای اتاق باشد، دیده خواهد شد که فلز به تدریج با گذشت زمان ازدیاد طول پیدا میکند. این ازدیاد طول وابسته به زمان خزش نامیده میشود و اگر به اندازه کافی ادامه یابد به شکست (گسیختگی) قطعه منجر خواهد شد. استحکام خزش یا استحکام گسیختگی (در اصطلاح فنی استحکام گسیختگی خزش یا استحکام گسیختگی تنشی نامیده میشود) همانند استحکامهای تسلیم و نهایی در دمای اتاق یکی از مولفههای مورد نیاز برای فهم رفتار مکانیکی ماده است. در دماهای بالا استحکام خستگی فلز نیز کاهش پیدا میکند. بنابراین برای ارزیابی توانایی فلز با در نظر گرفتن دمای کار و بار اعمال شده لازم است، استحکامهای تسلیم و نهایی، استحکام خزش، استحکام گسیختگی و استحکام خستگی معلوم باشند. ممکن است به خواص مکانیکی مرتبط دیگری مانند مدول دینامیکی، نرخ رشد ترک و چقرمگی شکست نیز نیاز باشد. خواص فیزیکی ماده مانند ضریب انبساط حرارتی، جرم حجمی و غیره فهرست خواص را تکمیل میکنند.
1-3- اصول متالورژی سوپر آلیاژها
سوپر آلیاژهای پایه آهن، نیکل و کبالت معمولاً دارای ساختار بلوری با شکل مکعبی با سطوح مرکزدار (FCC) هستند. آهن و کبالت در دمای محیط دارای ساختار FCC نیستند. هر دو فلز در دماهای بالا یا در حضور عناصر آلیاژی دیگر دگرگونی یافته و شبکه واحد آنها به FCC تبدیل میشود. در مقابل، ساختمان بلوری نیکل در همه دماها به شکل FCC است. حد بالایی این عناصر در سوپر آلیاژها توسط دگرگونی فازها و پیدایش فازهای آلوتروپیک تعیین نمیشود بلکه توسط دمای ذوب موضعی آلیاژها و انحلال فازهای استحکام یافته تعیین میگردد. در ذوب موضعی بخشی از آلیاژ که پس از انجماد ترکیب شیمیایی تعادلی نداشته است در دمایی کمتر از مناطق مجاور خود ذوب میشود. همه آلیاژها دارای یک محدوده دمایی ذوب شدن هستند و عمل ذوب شدن در دمای ویژهای صورت نمیگیرد، حتی اگر جدایش غیر تعادلی عناصر آلیاژی وجود نداشته باشد. استحکام سوپر آلیاژها نه تنها بوسیله شبکه FCC و ترکیب شیمیایی آن، بلکه با حضور فازهای استحکام دهنده ویژهای مانند رسوبها افزایش مییابد. کار انجام شده بر روی سوپر آلیاژ (مانند تغییر شکل سرد) نیز استحکام را افزایش میدهد، اما این استحکام به هنگام قرارگیری فلز در دماهای بالا حذف میشود.
تمایل به دگرگونی از فاز FCC به فاز پایدارتری در دمای پایین وجود دارد که گاهی در سوپر آلیاژهای کبالت اتفاق میافتد. شبکه FCC سوپر آلیاژ قابلیت انحلال وسیعی برای بعضی عناصر آلیاژی دارد و رسوب فازهای استحکام دهنده (در سوپر آلیاژهای پایه آهن- نیکل و پایه نیکل) انعطافپذیری بسیار عالی آلیاژ را به همراه دارد. چگالی آهن خالص gr/cm3 87/7 و چگالی نیکل و کبالت تقریباً gr/cm3 9/8 میباشد. چگالی سوپر آلیاژهای پایه آهن- نیکل تقریباً gr/cm3 3/8-9/7 پایه کبالت gr/cm3 4/9-3/8 و پایه نیکل gr/cm3 9/8-8/7 است.
چگالی سوپر آلیاژها به مقدار عناصر آلیاژی افزوده شده بستگی دارد. عناصر آلیاژی Cr, Ti و Al چگالی را کاهش و Re, W و Ta آنرا افزایش میدهند. مقاومت به خوردگی سوپر آلیاژها نیز به عناصر آلیاژی افزوده شده به ویژه Cr, Al و محیط بستگی دارد.
دمای ذوب عناصر خالص نیکل، کبالت و آهن به ترتیب 1453 و 1495 و 1537 درجه سانتیگراد است. دمای ذوب حداقل (دمای ذوب موضعی) و دامنه ذوب سوپر آلیاژها، تابعی از ترکیب شیمیایی و فرآیند اولیه است. به طور کلی دمای ذوب موضعی سوپر آلیاژهای پایه کبالت نسبت به سوپر آلیاژهای پایه نیکل بیشتر است. سوپر آلیاژهای پایه نیکل ممکن است در دمای oC1204 از خود ذوب موضعی نشان دهند. انواع پیشرفته سوپر آلیاژهای پایه نیکل تک بلور دارای مقادیر محدودی از عناصر کاهش دهنده دمای ذوب هستند و به همین لحاظ، دارای دمای ذوب موضعی برابر یا کمی بیشتر از سوپر آلیاژهای پایه کبالت هستند.
4-2-3- کوره قوس الکتریک
یک طرح عمومی از کوره EAF در شکل 4-1 نشان داده شده است. ظرفیت کوره EAF باید با ظرفیت تانک AOD یکسان باشد. عملیات EAF/AOD سوپرآلیاژها با ظرفیت Kg 9000 میتواند انجام گیرد، اما اکثراً ظرفیت تولید این روش در حدود kg36000 انتخاب میشود.
دیواره کوره فولادی مدور با سیستم آبگرد و لایه نسوز آجری است. انتخاب آجرهای نسوز به نوع آلیاژ و طراحی کوره بستگی دارد. هزینه نسوز کاری یک کوره متوسط 18 تنی تقریباً 18 هزار دلار است. قسمت پایین کوره ثابت و سقف آن متحرک است. سقف کوره میتواند در یک صفحه افقی حرکت کرده و کاملاً از کوره دور شود تا بار به درون آن ریخته شود. سقف کوره دارای سه الکترود گرافیتی است، که در داخل کوره قرار میگیرند. در قسمت جلو دیواره کوره مجرای خروج مذاب و در قسمت عقب آن دریچه سربارهگیری قرار دارد. کوره قوس تقریباً در داخل یک چاله قرار دارد، به نحوی که مجرای خروج مذاب و دریچه سربارهگیری تقریباً در کف کارگاه قرار میگیرند. وجود چاله اجازه میدهد، که پاتیل حمل مذاب و پاتیل سرباره میتوانند تا نزدیکی کوره آورده شوند. سطح این پاتیلها پایینتر از سطح مجراها قرار میگیرند. کوره قابلیت چرخش تا 90 درجه به طرف جلو را دارد، تا فلز مذاب کاملاً به درون پاتیل ریخته شود. زاویه چرخش کوره به طرف عقب به منظور سربارهگیری حداکثر 20 درجه است.
به دلیل پایین بودن چگالی مواد اولیه نمیتوان همه آن را یکباره به کوره بار کرد. ابتدا بخشی از بار به کوره اضافه میشود و سقف کوره مجدداً در جای خود قرار میگیرد. الکترودها به طرف شارژ حرکت میکنند و قوس الکتریکی بین بار و الکترود ایجاد میشود. ابتدا قوس کم ولتاژ ایجاد میشود. با شروع به ذوب شدن بار الکترودها پایینتر میروند و ولتاژ جریان افزایش مییابد. تا قوسی با طول بیشتر ایجاد گردد و در نتیجه بازدهی ذوب افزایش یابد. عملیات مزبور تا ذوب شدن همه بار ادامه پیدا میکند. سقف کوره کنار میرود و باقی مانده بار به کوره ریخته میشود (بارگذاری مجدد)، پس از بارگذاری مجدد، سقف کوره به محل قبلی خود برگشته و تا زمانی که کل بار ذوب شود، قوس بر قرار میشود. پس از آن گرم کردن ذوب با دمش اکسیژن و آرگن میتواند انجام شود.
اکسیدهایی که در این مرحله به وجود میآیند، ممکن است بسیار خورنده باشند و به لایه نسوز کوره آسیب وارد کنند. ساییدگی نسوزها در همه ذوبها اتفاق میافتد، ولی برای جلوگیری از آسیبهای موضعی شدید نسوز دیواره، معمولاً آهک به بار کوره اضافه میکنند. آهک نقش سرباره ساز دارد و سرباره ایجاد شده در کوره به صورت دستی از آن گرفته میشود. برای سربارهگیری کوره به سمت عقب چرخیده و سرباره جمعآوری شده، از دریچه سربارهگیری خارج میشود. این عمل در صورت نیاز و بسته به نوع بار قابل تکرار است.
پس از آنکه بخش عمدهای از سرباره تشکیل شده تخلیه گردید، یک نمونه آنالیز شیمیایی از ذوب تهیه میشود. بر مبنای ترکیب شیمیایی بدست آمده از این نمونه ممکن است دمش گاز ادامه یابد یا تعدادی از عناصر آلیاژی برای تنظیم ترکیب شیمیایی قبل از انتقال به واحد AOD به آن افزوده شود. زمان تقریبی مرحله EAF فرآیند EAF/AOD تقریباً 1 تا 3 ساعت است. پس از آماده شدن ذوب آن را به درون پاتیل انتقال مذاب میریزند. پاتیل انتقال (یک ظرف نسوز کاری شده با مجرای خروج مذاب) در مقابل کوره قوس قرار داده میشود. کوره میچرخد و محتویات خود را به درون پاتیل میریزد. ممکن است پاتیل با MgO نسوزکای شده باشد، تا با سرباره آهک مطابقت داشته باشد. امکان دارد موقع سربارهگیری ذرات سرباره بر روی مذاب شناور باقی به ماند. قبل از ریختن مذاب برای جلوگیری از افت دمای مذاب در پاتیل، آن را پیش گرم میکنند. پاتیل انتقال مذاب به تانک AOD برده میشود و مذاب به درون تانک ریخته میشود.
4-2-4- تانک AOD
در شکل 4-6 تانک AOD نشان داده شده است. دیواره تانک فولادی و نسوز کاری شده است. نمای بیرونی تانک شبیه به مخلوط کنهای بتن با تنه مدور و سر مخروطی است که در محل قرارگیری خود میتواند بر روی یک صفحه عمودی چرخش نماید. ظرفیت تانک متناسب با ظرفیت کوره EAF و معمولاً کمتر از 36 تن است. یکی از مشخصات ویژه تانک AOD این است که در کف آن تعدادی لوله برای دمش مخلوط اکسیژن و آرگن وجود دارد. این لوله تعدادی لوله هم مرکز هستند که از لوله مرکزی مخلوط آرگن و اکسیژن و از لوله بیرونی فقط گاز خنثی (معمولاً آرگن) برای خنک کردن انتهای لوله مرکزی دمیده میشود.
لایه نسوز تانک AOD شبیه نسوز کوره EAF است و در طی فرایند فرسوده میشود. کنترل درجه قلیایی سرباره یک عامل کلیدی برای اطمینان از آسیب ندیدن لایه نسوز از طرف سرباره میباشد. اولین مرحله در تانک AOD کربن زدایی مذاب است. اگر درون مذاب اکسیژن خالصی دمیده شود، نتیجه کار نه تنها کربن زدایی مذاب نخواهد شد بلکه کروم بیشتری به اکسید کروم تبدیل خواهد شد. برای اقتصادی کردن واکنش کربنزدایی، فشار جزئی اکسیژن دمیده شده به مذاب با اضافه کردن آرگن به آن کاهش داده میشود تا از مقدار کرومی که به اکسید کروم تبدیل میشود، کاسته شود. وقتی که مقدار کربن مذاب بالا باشد، نسبت آرگن به اکسیژن در مخلوط گازی 3 به 1 در نظر گرفته میشود. با کاهش مقدار کربن مقدار آرگن باید افزایش یابد. با نزدیک شدن به مرحله کربن زدایی کامل نسبت آرگن به اکسیژن تقریباً 6 به 1 در نظر گرفته میشود.
حرارتی که در اثر واکنش کربن زدایی به وجود میآید، مقداری از کروم را اکسید میکند. در اثر دمش گاز، سیلسیم نیز اکسید میشود ولی حرارت ناشی از اکسیداسیون آن ناچیز است و اثر کمی در گرم کردن مذاب دارد. یادآوری این موضوع اهمیت دارد که تانک AOD فاقد منبع انرژی حرارتی خارجی سات و دمای آن در اثر واکنشهای گرمازا افزایش پیدا میکند. چنانچه لازم باشد دمای مذاب پایین آورده شود، از قراضه جامد استفاده میشود. یکنواخت نگه داشتن دمای مذاب از لحاظ اقتصادی اهمیت دارد، زیار تبدیل عناصر آلیاژی با ارزش (به ویژه کروم و نیوبیوم) به سرباره تحت تاثیر دما انجام میگیرد. از فوق گداز شدن مذاب باید جلوگیری کرد، زیرا خنک کردن و گرم کردن مجدد آن زمان بر بوده و بازیابی کامل عناصر آلیاژی موجود در سرباره را دشوار میسازد.
در طی فرآیند کربنزدایی به مذاب آهک اضافه میشود. آهک اضافه شده در مرحله دمش گاز کاملاً با مذاب مخلوط شده و درجه بالایی از گوگرد زدایی مذاب به دست میآید. CaS حاصل از گوگردزدائی به صورت سرباره در میآید. چنانچه پس از نمونهگیری از ترکیب شیمیایی، کربنزدایی تا سطح مورد نظر انجام شده باشد، مرحله بازیابی عملیات AOD شروع میشود.