" />
X
تبلیغات
رایتل

دانلود تحقیق- مقاله-پروژه-کارآموزی

مرجع کامل خرید و دانلود گزارش کار آموزی ، گزارشکار آزمایشگاه ، مقاله ، پروژه و پایان نامه های کلیه رشته های دانشگاهی

مقاله بررسی سیستم ماجان

مقاله بررسی سیستم ماجان در 47 صفحه ورد قابل ویرایش
دسته بندی علوم انسانی
بازدید ها 5
فرمت فایل doc
حجم فایل 74 کیلو بایت
تعداد صفحات فایل 47
مقاله بررسی سیستم ماجان

فروشنده فایل

کد کاربری 6017
کاربر

مقاله بررسی سیستم ماجان در 47 صفحه ورد قابل ویرایش


قسمت اول: مقدمه

1-1) سر شناسنامه سیستم:

بشر از ابتدا الهام گرفتن از طبیعت را در کارهای مختلف خود مد نظر داشته و دارد . که نمونه های بارز و وافری از آن را می توان حتی در انسانهای اولیه دید.

در سیستم مورد بررسی که تحت پروژه به آن خواهیم پرداخت نیز الهامات بسیاری از طبیعت درطراحی، ساخت و شکل گیری کالاها و تولیدات سیستم وجود دارد، بعنوان مثال می توان طراح های تخت جمشید که از بارزترین کارهای این سیستم تولید و صنعتی است را مثال زد.

لازم به ذکر است که سیستم مورد نظر مطالعه افتخار این را داشته که توانسته طرح های اصیل ایرانی و فرهنگهای سرزمین عزیزمان را درقالب کارها و محصولات خود و نه تنها درمعرض دید هموطنانمان قرار دهد بلکه به کشورهای مختلف بشناساند.

برای کسب اطلاعات بیشتر می توان به سایت اینترنتی این سیستم مراجعه کرد. که شرح کلی از عملکرد از ابتدا تا به حال سیستم و پیشرفت ها و فعالیت های آن مطرح شده. درپایان تعدادی از طرح ها و کارهای این سیستم نیز مورد نمایش قرار خواهد گرفت.

سایت سیستم ماجان: www.majanart.com

آدرس نمایشگاه: بزرگراه اشرفی اصفهانی ، نرسیده به پل همت مرکز خرید تیراژه، طبقه همکف، واحدهای 60 و 62.

تلفن: 66694485-6-021 و 44492325-021

همراه: 09123138610(مهندس باقری)

2-1)نگاهی گذرا به چگونگی عملکرد سیستم ماجان:

این سیستم همانند بیشتر سیستم های تولیدی- صنعتی دارای سلسله مراتبی از فعالیت ها می باشد که بعداً در قسمت های بعدی نمودار خواهد شد.

دررأس سیستم ماجان مدیر ارشد قرارداد، کلاً ساختار مدیریتی این سیستم به چهاردسته (مالی، اداری، تولید، عرضه محصول و تبلیغات) تقسیم می شود.

مدیریت مالی- اداری شامل حسابداری و امور اداری می شود.

مدیریت تولید، کنترل کننده قسمتهای تهیه مولد اولیه، روابط عمومی، خط تولید، طراحی و تعمیر می باشد. مدیریت عرضه محصول به دو صورت خارجی و داخلی است که خارجی با شرکت در نمایشگاههای بین المللی و داخل به شکل عرضه درنمایندگی ها وازطریق عرضه در دفتر شرکت و فروشگاه مرکزی است.

مدیریت تبلیغات هم به 3 دسته شرکت در نمایشگاههای بین المللی (خارجی) شرکت در سمینارها و ایجاد زمینه های معرفی مناسب کالا تقسیم می شود.

عملیات خط تولید این سیستم با عملکرد های برشکاری – جوشکاری، رن گ کاری –رویه کوبی – نجاری –سنبلاست-کنترل کیفیت QC-مونتاژ و بسته بندی می شود البته قسمت جوشکاری خود دارای زیر مجموعه ای جوشکاری اولیه و نهایی است که جوشکاری اولیه بصورت اسکلت و کلاف زنی می باشد.

درقسمتهای بعد خواهیم دید که چگونه این سیستم فعالیت می کند، امید آن که شروح مذکور در این پروژه بتواند در شناسایی سیستم مؤثر افتد.

2-5-1) شناسایی actorها:

actorهای (کشگرها) سیستم در اولین مرحله شناسایی شدند که به شرح زیر هستند: مدیر ارشد- مشتری- حسابدار-مسئول سفارشات-مدیر عرضه- مسئول عرضه (مسئول عرضه داخلی- مسئول عرضه خارجی) – مسئول تولید- مدیراداری مالی- انجام دهنده امور اداری – مدیرتولید – مسئول خط تولید- نمایندگی ها- دفاتر مرکزی – مدیر تبلیغات –(مسئول تبلیغات خارجی مسئول تبلیغات دالخلی) یا همان مسئول تبلیغات.

2-5-2) شناسایی use case ها:

به شرح زیر می باشد:

تأیید محصول- عرضه محصول- تولید محصول- تعمیر ماشین آلات- تهیه مواد اولیه – طراحی و آزمایش- خط تولید – تأیید مشتری-تهیه صورتحساب- سفارش محصول- پرداخت- چک- نقدی- اقساط- قرارداد-(انجام امور اداری- وجوه پرداختی مشتری- هزینه محصول- هزینه مواد- حسابرسی-نظارت برامور- ارائه محصول-برشکاری- جوشکاری- رنگکاری- رویه کوبی- نجاری-بسته بندی- کنترل کیفیت-سنبلاست-مونتاژه –ارائه نمایندگیها- نمایشگاههای بین المللی-تبلیغات- تبلیغات داخلی-تبلیغات خارجی-تأیید انتقال-کاتالوگ.

2-5-3) کشیدن use case diagram ها:

قسمت سوم «گزارش تحلیل و تجزیه سیستم»

در تحلیل یک سیستم مؤلفه هایی احتیاج داریم که آنها را رفته رفته بصورت سلسله وار معین خواهیم نمود. هدف از این قسمت تجزیه و تحلیل سیستم برای بدست آوردن مقدمات فاز طراحی می باشد تادر فاز طراحی با اندکی تأمل و تغییر برروی فاز تحلیل بتوانیم به خواسته های موردنیاز دست پیدا کنیم.

درزیر مراحل کار را خواهید دید:

3-1) پالایش use case diagram های فاز شناخت و بدست آوردن use case diagram مناسب برای تحلیل :

برای این منظور ما شکل 2-16 را با کمی تغییر بصورت پالایش شده درآورده و دراین بخش آورده و دراین بخش به بررسی آن می پردازیم:

3-2) تهیه class diagram:

نحوه ایجاد کلاس دیاگرام برای سیستم ماجان را به صورت مرحله به مرحله بررسی می‌کنیم.

3-2-1) تشخیص کلاسها:

این کار را می توان با توجه به خلاصه ای که در زیر مطرح شده بدست آورد:

مشتری سفارش تولید کالا می دهد، پس از آن برای کالای خود طرح ارائه می کند، مسئول سفارشات مشتری را به تأیید مدیر می رساند. درصورت تأیید مدیریت سفارش مشتری پذیرفته می شود و قرارداد بسته می شود، سفارش به تولید محصول ارائه می‌شود. تولید محصول با انجام عملیات تولید که شامل برشکاری، جوشکاری، رنگکاری، رویه کوبی، نجاری، کنترل کیفی، بسته بندی و مونتاژ می‌شود، پس از تولید محصول، آنرا به انبار انتقال میدهند و ازآنجا به مشتری تحویل می دهند یا اینکه اگر سفارش مشتری نباشد آن را به نمایندگی ها یا دفتر مرکزی و نمایشگاهها منتقل می کنند. می توان کلاسهایی را که بدست می آید با استفاده از شرحی که درجدول شرح use case ها مطرح شده یافت.

3-2-4) تعیین خصوصیت کلاسها و عملیات کلاسها:

برای تعیین خصوصیات کلاسها، این کار درشکل 3-2 و 3-3 با نمایش دسته بندی کلاسها به صورت خصوصیت و رفتار، هم خصوصیت کلاسها و هم رفتار و عملکرد و کلاسها مشخص شده است. البته لازم به ذکر است که کلاس های کامل این سیستم به علت کثرت همگی بیان نشده اند، بلکه فقط مهمترین کلاس ها با توجه به use case diagram های طراحی شده و پالایش شده دربخش تحلیل استفاده ونمایش داده شده‌اند.

چگونگی عملیات کلاسها و تعامل کلاسها با هم را نیز می توان در شکل class diagram 3-24 مشاهده کرد. دراین شکل هدف نمایش نحوه ارتباط و تعامل کلاسها با یکدیگر است.

3-3) نمودا activity diagram:

برای رسم نمودار فعالیت این سیستم با استفاده از مطالب قبل به انجام این امر و طراحی این نمودار پرداختیم که درشکل صفحه بعد مشخص شده است.

البته می توان یک دیاگرام فعالیت کامل را هم ترسیم کردولی با دیاگرام شکل 3-25 می توان به نحوه کاری سفارش کالا درسیستم ماجان دست یافت.

قسمت چهارم «گزارش طراحی سیستم»

برای طراحی سیستم با توجه به آنچه درفاز تحلیل بدست آمد بعنوان مقدمه به طراحی می پردازیم. با اتمام مرحله طراحی سیستم به حالتی در می آید که مرحله پیاده سازی آن با توجه به طراحی بسیار ساده می باشد. برای بهبود هر مرحله، ما فاز یا مرحله قبل را پالایش می کنیم و تغییرات موجود در هر مرحله را به مرحله بعد قبل ارجاع می دهیم تا پروژه ما بدون نقص باشد و خواسته ها و نیازهای مشتری را برآورده کند.

فاز طراحی شامل چند مرحله می باشد که در زیر به بررسی و بازکردن آن می‌پردازیم:

4-1) پالایش مدل use case فاز تحلیل:

case diagram use که درفاز تحلیل مطرح شد، یک مدل کامل بود و پالایش آن به همان صورت می باشد پس برای این مرحله ما use case diagram قبلی را مناسب پیشنهاد می کنیم. این use case diagram نشان دهنده مراحل ارتباطی actor ها و use case ها به طور کامل می باشد.

ما برای طراحی و انجام مراحل بعد دربخشهای بعد از همان شکل 3-1 استفاده می‌کنیم.

4-2) use Realization :

این بخش شامل 3 مرحله می شود به شرح زیر:

4-2-1)actviety diagram :

نمودار دیاگرام activity که درقسمت قبل، به شکل 3-25 مطرح شد، نمودار مناسب می باشد. پس درموارد لازم از همان شکل بهره می بریم.

4-2-2) sequence دیاگرام :

نمودار دیاگرام توالی که در شکل 3-26 از قسمت قبل مطرح شد نیز یک یک نمودار کامل برای نمایش توالی فعالیت های سیستم می باشد، پس درمورد نیاز از همان شکل استفاده می کنیم.

4-2-3) collaboration diagram:

این دیاگرام نحوه همکاری بین اشیا جهت انجام یک سناریو یا فعالیت را نشان میدهد. دراین قسمت همه اشیا object سیستم و ارتباطاتشان درقالب یک دیاگرام ارتباطی نمایان می شود.

4-3) تعیین معماری سیستم

برای تعیین این مرحله می توان از دیاگرام های DFD، و یا context های مربوطه استفاده کرد که نمونه ای از آن درشکل 1-2 آمده و یا دیاگرام های شکل چارچوبی نمایندگی ها درشکل 2-1 نیز موجود است.

اما برای معماری ما یک DFD ساده طراحی کرده ایم و سپس FHD آنرا بدست آورده‌ایم که از مدل جریان های تراکنشی و تبدیلی درآن بهره برده می شود.

ما بنا را براین می گذاریم که مشتری برای درخواست با یک مسئول ثبت درخواست یا یک صفحه کنترل درخواست مشتری روبرو است و از آن جا اطلاعات به سیستم منتقل شده و درپایان نتیجه های موردنظر در صفحه نمایشی یا بوسیله یک مسئول اعلام نتایج به مشتری اعلام شود دراین حالت DFD آن بصورت شکل زیر می باشد. و سپس به FDH تبدیل می شود تا مراحل معماری سیستم طراحی شود. البته اینکه سیستم دو فیلتر یا پوشش را در سرراه مشتری قرار می دهد کاربسیار مهم و مفیدی در امنیت سیستم ایجاد می کند و غیر از این نفوذ هر فرد عادی یا غیر مجازی بطور عملی یا غیرمجازی بطور عملی و به راحتی جلوگیری می شود.

در DFD مذکور اطلاعات پس از درخواست مسئول سفارشات به قسمتهای مختلف از جمله مدیریت برای تأیید، قرار داد برای بستن قرارداد، حسابداری برای تعیین هزینه ها و قیمتها و خط تولید برای تولید کالای سفارشی مشتری می رود.

درپایان هریک از این بخش ها یا نتیجه حاصله دریک نمایش پیام وضعیت، پدیدار می شود و به مشتری نمایانده می شود.


تاریخ ارسال: سه‌شنبه 9 آبان 1396 ساعت 12:45 | نویسنده: saeed | چاپ مطلب 0 نظر

بررسی اطمینان بخشی سیستم توزیع

پژهش بررسی اطمینان بخشی سیستم توزیع در 87 صفحه ورد قابل ویرایش
دسته بندی فنی و مهندسی
بازدید ها 3
فرمت فایل doc
حجم فایل 459 کیلو بایت
تعداد صفحات فایل 87
بررسی اطمینان بخشی سیستم توزیع

فروشنده فایل

کد کاربری 6017
کاربر

پژهش بررسی اطمینان بخشی سیستم توزیع در 87 صفحه ورد قابل ویرایش


اطمینان بخشی سیستم توزیع

فهرست مطالب :



1- تعاریف اولیه 6 - 1

2- محدودیتهای سیستم توزیع 7 - 6

3- ترازهای اطمینان بخشی توزیع 9 - 7

4- مروری بر آمار و احتمالات و مفاهیم ریاضی پایه برای مبحث اطمینان بخشی 18 - 9

5- سیستمهای سری 20- 18

6- سیستمهای موازی 21- 20

7- سیستمهای سری موازی 74- 21

8- واژگان انگلیسی 79- 75

9_منابع و ماخذ 80




















مفاهیم کلی

خروج: از مدار خارج شدن مؤلفة سیستم توزیع را بر هر دلیلی خروج آن مؤلفه می گویند.

خروج بابرنامه: از مدار خارج شدن مؤلفه ای بصورت عمدی و با برنامی قبلی را خروج با برنامة آن مؤلفه می گویند.

خروج اجباری: خروجی که بر ارادة بهره بردار در انجام آن نقشی نداشته و بعلت ایجاد شرایط اضطراریِ خاص آن مؤلفه، خروج بصورت اجباری انجام می شود.

خروج اجباری گذرا: درصورتی که علت خروج فوراً از بین برود، و مؤلفة خارج شده (بصورت اجباری) بتواند بصورت اتومات به مدار باز گردد، خروج اجباری را خروج اجباریِ گذرا می نامند.

خروج اجباری دیرپا: خروج اجباری که گذرا نباشد دیرپا خواهد بود.

خروج جزئی: خروجی که درآن تنهای قسمتی از یک مؤلفه از مدار خارج شده است. بعبارت دیگر ظرفیت و یا کیفیت انجام وظیفة مولفة مذکور کاهش می یابد.

بدیهی است امکان به تعویق انداختن خروج بابرنامه وجود دارد، در حالی که چنین امکانی برای خروج اجباری وجود ندارد.



بلوک دیاگرام زیر انواع خروجها را نشان می دهد:








قطع (Interruption): رخ دادن وقفه در خدمت رسانی به یک یا چند مصرف کننده را قطع شدن این مصرف کننده ها می گویند.

قطع اجباری(Forced Interruption): قطع ناشی از خروج اجباری را قطع اجباری می گویند.

قطع با برنامه(Scheduled Interruption): قطع ناشی از خروج با برنامه را خروج با برنامه می گویند.

قطع ها از نظر زمان بر طرف شدنشان نیز به سه دسته تقسیم می شوند.

1- قطع آنی(Instantaneous Interruption): قطعی است که در کمتر از یک دقیقه قابل رفع می باشد.

2- قطع موقتی(Mometary Interruption): قطعی است که برطرف کردن آن معمولاً یک تا دو ساعت طول می کشد.

3- قطع طولانی(Long Interruption): قطی است که بیش از چندین ساعت زمان برای بر طرف کردنش لازم است.



فلوچارت زیر، علل عمدة خروج در شبکة توزیع را نشان می دهد.



اطمینان بخشی در واقع سلامت سیستم و اجتناب از خروج هایی که ممکن است رخ دهند، را توصیف می کند. و کفایت نیز به کافی بودن ظزفیت سیستم برای تأمین نیازهای انرژی برق مشترکان اشاره می کند.



شاخص های اطمینان بخشی(Index of Reliability):






مطابق پیشنهاد کمیتة IEEE گزارش خروج دستگاهها بایستی دارای توضیحات زیر باشد:

1- نوع، طرح، سازنده و توضیحات دیگری برای طبقه بندی

2- تاریخ و محل نصب

3- عامل خرابی (آذرخش، درخت، خطای بهره بردار)

4- مد خرابی (اتصال کوتاه، اضافه بار)

5- زمان شروع خرابی (خروج) و زمان بازگشت، ذکر تاریخ وشرایط جوی بهنگام خرابی

6- نوع خروج (اجباری، با برنامه، گذرا و دیرپا)

علاوه بر اطلاعات مذکور بهتر است که در تهیة گزارش خروج موارد زیر نیز قید گردند:

· گزارش تعداد کل دستگاه (مؤلفه) های مشابهِ در حال کار، برای تعیین نرخ خروج هر مؤلفه در کار سالانه

· گزارش خروجهایی که با عث رخ دادن قطعی در شبکة توزیع شده است.

بایستی خاطر نشان ساخت که گزارش خرابیها اطلاعات با ارزشی را برای برنامه های نگهداریِ پیشگیرانه و تعویض دستگاهها، فراهم می کند.

در عمل بین اطلاعات حاصله از گزارشها و آنچه که از قبل پیش بنی شده است، بدلایل زیر اختلافاتی وجود دارد.

1- تعریف خرابی

2- اختلاف بین محیط واقعی و محیط پیش بینی شده

3- قابلیت نگهداری و آزمایش دستگاه ها و میزان تخصص کارکنان

4- ساخت مؤلفه ها و نرخ خرابی مفروض برای مؤلفه ها در پیش بینی ها

5- فرآیند ساخت، شامل بازرسی و کنترل کیفیت

6- توزیع زمانی تا وقوع خرابی

7- استقلال خرابی مؤلفه ها



گزارش پیش بینی منطقه ای و ملی بار سالانه و تحلیلهای قابلیت اطمینان بخشی شبکة توزیع در برخی از کشورها (ایالات متحدة آمریکا) برعهدة انجمنی بنام انجمن ملی اطمینان بخشی برق می باشد. انجمنهای منطقه ای اطمینان بخشی روشهای طرح ریزی و بهره برداری سیستم توزیع را برای شرکتهای برق رسانیِ عضو تهیه می کند، تا قابلیت اطمینان بخشی بهبود یافته و هزینه ها کاهش یابند.



بنا به مطالعات انجمن ملی اطمینان بخشی برق، می توان نتایج زیر را در مورد اطمینان بخشی سیستم بیان نمود:

1- معمولاً 50 درصد خروجها در کمتر از 6 دقیقه و 90 درصد در کمتر از 7 ساعت قابل برگشت به مدار هستند.

2- چون خروجهای سیستم توزیع اغلب گزارش نمی شوند (بدلیل کوچک بودن آنها در مقابل خروجها و خرابی های سیستم انتقال و بخش تولید)، میزان خروجی های شبکة توزیع گزارش شده، نسبت به سیستم انتقال و تولید تنها 7 درصد است. ولی در حقیقت مطابق گزارشهای انجمن اطمینان بخشی برق، تقریباً 80 درصد از کل قطعی های پیش آمده به دلیل خرابی و خروج در سیستم توزیع رخ می دهند.

3- با اینکه روشهای مناسبی برای ارزیابی اطمینان بخشی سیستم توزیع وجود دارد، اما داده های مربوط به کارایی اطمینان بخشی، برای تعیین مؤثرترین شیوة سرمایه گذاری کافی نمی باشد.

4- بیشتر قطعی های توزیع بر اثر شزایط جوی ایجاد می شوند ضمن اینکه عملکرد نامناسب بهره بردار می تواند مزید بر علت باشد.

5- بدیهی است با کاهش زمان تشخیص خرابی و واکنش سریع و مناسب نسبت به رفع آن، می تواند اطمینان بخشی سیستم توزیع را افزایش دهد.
محدویتهای موجود در سیتم توزیع


برای داشتن عملکرد مطمئن در سیستم توزیع بایستی به محدودیتهای موجود سیستم توزیع توجه شود که به برخی از آنها در ادامه اشاره می گردد.

1- محدویتهای گرمایی (Thermal limitations) : بایستی توجه داشت که جریان عبوری از تجهیزات شبکة توزیع از میزان حد مجاز تعیین شده برای آنها تجاوز نکند.

2- محدویتهای اقتصادی (Economic limitations): گاهاً ممکن است شرایطی پیش آید که برای با لا بردن قابلیت اطمینان شبکة توزیع نیاز به صرف هزینة مالی زیادی باشد که از نظر اقتصادی به صرفه نمی باشد. در این حالت معمولاً بهینه ترین حالت را در نظر گرفت.

3- اضافه ولتاژ و افت ولتاژ (Over-Voltage & Voltage drop): برای افزایش قابلیت اطمینان بخشی بایستی دامنة ولتاژ در حد استانداردِ خود حفظ شود.

4- ظرفیت جریان مجاز (Fault current capability): یکی از شاخصهایی که بایستی تحت کنترل بوده و میزان آن پیش بینی شود جریان عبوری از تجهیزات شبکه است بخصوص در ناحیه هایی که رشد مصرف کنندگان در آن نواحی قابل ملاحظه است.

5- وجود چاک در شکل موج ولتاژ و پدیدة فلیکر (Voltage Flicker & Dip): ولتاژ سیستم توزیع بخاطر وجود بارهای القایی و کوره های قوس الکتریکی دارای نوسان خیلی کوچکی است اصطلاحاً فلیکر ولتاژ نامیده می شود. علاوه بر آن ممکن در برخی از مواقع ولتاژ شبکه دارای فرو افتادگیهای شدیدی باشد. این دو پدیده نیز جز محدویدیتهای شبکه توزیع هستند و برای تحلیلهای اطمینان بخشی به سیستم توزیع بایستی در نظر گرفته شوند.

6- هارمونیکها و فرکانس: هارمونیکهای موجود در ولتاژ شبکة توزیع باعث کاهش کیفیت ولتاژ و در نتیجه کاهش کیفیت قابلیت اطمینان شبکة توزیع می شود.

ترازهای مناسب اطمینان بخشی شبکة توزیع



خدمت رسانی شرکتهای برق به مصرف کنندگان بایستی پیوسته و با کیفیتی قابل قبولِ مشترکان خود باشد. منظور از خدمت رسانی برق پیوسته، تأمین تقاضای مورد نیاز مشترک، بهمراه تأمین ایمنی افراد و دستگاه ها است. و منظور خدمت رسانی با کیفیت، تأمین تقاضای مشترک و فرکانس مورد توافق است.

یک شرکت برق برای حفظ خدمت رسانی اطمینان بخش مشترک خود، باید دارای انرژی ذخیرة کافی در سیستم خود باشد تا در هنگام خروج مؤلفه ای از سیستم، کل سیستم همچنان امکان خدمات رسانی به مشترکان خود را بگونه ای داشته باشد تا به مصرف کننده ها حداقل خسارت وارد گردد و حتی در صورت امکان هیچ خسارتی به مصرف کننده ها وارد نشود.

از جمله ابزار مفید در تعیین هزینه های لازم برای بهبود اطمینان بخشی، تحلیل اقتصادی اطمینان بخشی سیستم است. چراکه بدین ترتیب می توان مقدار واقعی سرمایه گذاری لازم در سیستم را بدست آورد.









تراز اطمینان بخشی توزیع؛



عبارتست از سطحی از اطمینان بخشی که در آن شرکت برق رسانی کمترین هزینة اقتصادی را متقبل می شود. فرض کنید که نشان دهندة تابع اطمینان بخشی، نشان دهندة هزینة خسارت وارده به مشترکان بر اثر وقوع قطعی، هزینة لازم برای رسیدن سطح اطمینان بخشی، و کل هزینة انجام گرفته باشند. تراز اطمینان بخشی() عبارتست ازای که در آن کمترین مقدار خود () را داشته باشد. بنابراین داریم:



(1)





(2)



(3)



شکل1 منحنی توابع هزینة و مکان تراز اطمینان بخشی را نشان می دهد. همانطور که در این شکل مشاهده می شود، با افرایش اطمینان بخشی، افزایش یافته و کاهش می یابد. بسیاری از شرکتهای برق رسانی شبکة توزیع خود را در تراز قطع معینی، مثلاً تک قطع، طراحی می کنند تا رخ دادن یک خرابی بعلت وجود ظرفیت کافی انرژی (به ازاء یک قطع) و وجود روشهای مختلف کلید زنی، باعث ایجاد قطعی در سیستم توزیع نشود. بنابراین تحلیل قطع مدار، به تعیین ضعف ترین نقاط شبکة توزیع کمک می کند.





اطمینان بخشی



عمل یا آزمایش تصادفی: عملی که نتیجة آن از قبل قابل پیشبینی نیست. مانند؛ زمان خراب شدن مؤلفه ای از سیستم توزیع. بایستی توجه داشت که ممکن است شرایط محیط و ویژگیهای خود سیستم (مؤلفة سیستم) بگونه ای باشد که حدود زمان رخ دادن خرابی را برای آن مؤلفه مشخص نمود، ولی با این حال نمی توان بصورت قطعی زمان خرابی این مؤلفه از سیستم را مشخص نمود. اما بکمک عمل احتمال و داشتن داده های صحیح، میزان امکان رخ هر کدام از حالتهای مختلف یک عمل تصادفی را محاسبه نمود.

هر کدام از نتایج حاصله از یک عمل تصادفی را پیشامد تصادفی می نامند.

فضای نمونه( ): به مجموعة کلیة نتایج ممکن از یک آزمایش تصادفی می گویند.

پیشامد ساده: هریک از حالات ممکنه را که قابل تقسیم به حالتهای جزیی تر تقسیم کرد، یک پیشامد ساده می گویند. پیشامدهای ساده نمی توانند هزمان رخ دهند، ضمن آنکه مجموع آنها کل فضای نمونه را در بر دارد.

مثال: رخ دادن خرابی در ترانسفورمرهای موجود در یک سیستم توزیع را می توان بعنوان یک عمل تصادفی تلقی نمود. در این حالت خراب شدن هر کدام از ترانسفورمرها یک پیشامد ساده می باشد، حال آنکه خرابی ترانفورمرهایی که تاکنون تعمیر نشده اند، پیشامد ساد نیست چرا که خود از شامل چندین پیشامد ساده (خرابی یکی از این ترانسفورمرها) تشکیل شده است.

هر پیشامد تصادفی بر اساس تعریفی که برای آن صورت گرفته است، ممکن است شانل یک یا چندین پیشامد ساده باشد.

زیر پیشامد ( ): پیشامد را زیر پیشامد می گویند، اگر و فقط اگر تمام حالتهای قائل شده برای پیشامد، برای نیز لحاظ شده باشد.

اشتراک ( ): عبارست از تمام حالتهای تعریف شده هم برای پیشامد و هم برای پیشامد .

دو پیشامد جدا از هم: دو پیشامد را جد از هم گویند اگر و فقط اگر هیچ حالت مشترک برای آنها وجود نداشته باشد، بعبارت دیگر اشتراک آنها تهی باشد.

جدا از هم)( (4)



اجتماع ( ): عبارست از تمام حالتهای تعریف شده برای پیشامد یا برای پیشامد .

تفاضل ( ): عبارتست از تمام حالتهای تعریف شده برای که در وجود ندارند.

متمم پیشامد (): تمامی حالتها از فضای نمونه، که در پیشامد موجود ندارد.

(5)

تفاضل متقارن (): تمای حالتهایی که یا در، یا در، ولی نه در هر دوی این پیشامدها، وجود دارند، را تفاضل متقارن این دو پیشامد می گویند

(6)

اصول شمارش: فرض کنید کار به طریق با نامهای و کار به طریق با نامهای، بتوان انجام داد؛

الف) اصل جمع: اگر انجام کار منوط به انجام کار یا کار باشد، آنگاه کار را به طریق با نامهای می توان انجام داد.

ب) اصل ضرب: : اگر انجام کار منوط به انجام کار و کار باشد، آنگاه کار را به طریق با نامهای (و) می توان انجام داد.

ترتیبتاییِ شیء (): عبارتست از تعداد حالات مختلف کنار هم قرار گرفتن از بینشیء، بگونه ای که چگونه کنار هم قرار گرفتن آنها دارای اهمیت می باشد.

(7)



ترکیبتاییِ شیء (): عبارتست از تعداد حالات مختلف کنار هم قرار گرفتن از بینشیء، بگونه ای که چگونه کنار هم قرار گرفتن آنها دارای اهمیت نمی باشد.

(8)



شمارش از طریق مهره ها (): با فرض اینکه جعبه را بخواهیم با تعداد مهره پر کنیم، بسته به اینکه مهره ها متمایز یا غیر متمایز باشند و یا اینکه گذاشتن مهره ها در جعبه ها بصورت مکرر، مجاز و یا غیر مجاز باشد، چهار حالت وجود خواهد داشت:



الف) مهره ها متمایز و مهرة مکرر مجاز باشد:

(9)



ب) مهره ها متمایز و ریختن مهرة مکرر غیر مجاز:

(10)

ج) مهره ها غیر متمایز ریختن مهره های مکرر غیر مجاز:

(11)



د) مهره ها غیر متمایز ریختن مهره های مکرر مجاز:

(12)



احتمال یک پیشامد تصادفی (): عبارتست از عددی بین صفر و یک که میزان درجة اتفاق افتادن آن پیشامد تصادفی را در هر بار انجام آزمایش تصادفی نشان می دهد.

آزمایش تصادفی یکنواخت: اگر تمام پیشامدهای ساده دارای احتمالهای یکسان باشند، آنگاه آزمایش تصادفی مذکور را یکنواخت گویند.

(13)



برخی از قضایای مهم احتمال:









پیشامد شرطی(): عبارست از احتمال رخ دادن پیشامد، بشرط اینکه پیشامد رخ داده باشد.



(15)





احتمال مرکب: فرض کنید فضای نمونة توسط پشیامدهای جدا از همِ، افراز شده باشند. آنگاه برای هر پیشامد دیگری نظیر داریم:



(17)



(18) همچنین داریم (فرمول بیز):





دو پیشامد مستقل از هم: دو پیشامد که رخ دادن هر کدام از آنها روی وقوع پیشامد دیگر تأثیری نداشته باشد، را مستق از هم گویند.

مستقل از هم) ( (19)



متغیر تصادفی: تابع حقیقی که دامنه اش فضای نمونه ای نظیر، و برد آن زیر مجموعه ای از اعداد حقیقی است، را متعیر تصادفی می نامند. هرگاه شمارش پذیر باشد، گسسته و در غیر این صورت پیوسته خواهد بود.

تابع توزیع احتمال: تابع حقیقی را تابع توزیع احتمال می نامند.

خواص تابع توزیع احتمال:

الف)

ب) تابعی غیر نزولی است

ج) بعبارت دیگر از سمت راست تابعی پیوسته است

تابع چگالی احتمال (): مشتق تابع در نقطة را تابع چگالی احتمال در آن نقطه می گویند.

(20







امید ریاضی یک متغیر تصادفی (): عبارتست محتمل ترین حالتی () که امکان رخ دادن آن وجود دارد.

در حالت کلی امید ریاضی برای تابع عبارتست از:













(22)





برخی از متغیرهای تصادفی معروف



1- متغیر تصادفی برنولی: عبارتست از متغیر تصادفی () که تنها دارای دو حالت (شکت: و پیروزی:) است. اگر احتمال پیروزی برابر با باشد، آنگاه تابع چگالی احتمال متغیر تصادفی برنولی عبارتست از:

(23)



2- توزیع دوجمله ای: تعداد پیروزیها () برای حالتی که یک آزمایش تصادفی برنولی بار انجام بطور مستقل از هم انحام شده است را متغیر تصادفی با توزیع دو جمله ای می نامند. اگر احتمال پیروزی برای هر بار انجام آزمایش برابر با باشد، آنگاه تابع چگالی احتمال متغیر تصادفی با توزیع دوجمله ای عبارتست از:

(24)



امید ریاضی متغیر تصادفی با توزیع دو جمله ای عبارتست از:

(25)





-3متغیر تصادفی نرمال: متغیر تصادفی پیوستة در بازة نرمال نامیده می شود اگر و فقط اگر تابع چگالی احتمالی آن، بصورت زیر تعریف شود:

(26)

امید ریاضی متغیر تصادفی نرمال می باشد.

4- متغیر تصادفی پواسن: عیارتست از متغیر تصادفی گسسته ای () که تعداد رخ دادن حالت مورد نظر در فواصل زمانی یا در ناحیة مکانی، را نشان می دهد. اگر نشان دهندة میانگین تعداد حالت مورد نظر در فاصلة زمانی، و یا ناحیة مکانی مشخص شده باشد، آنگاه تابع چگالی احتمال متغیر تصادفی پواسن عبارت خواهد بود از:

(27)

امید ریاضی متغیر تصادفی پواسن نیز برابر است.



5- متغیر تصادفی پیوستة نمایی: متغیر تصادفی پیوستة در بازة نمایی نامیده می شود اگر و فقط اگر تابع چگالی احتمالی آن، بصورت زیر تعریف شود:

(28)



امید ریاضی متغیر تصادفی نمایی نیز برابر است. متغیر تصادفی نمایی معمولاً برای محاسبة زمان بین دو اتفاق و یا زمان اولین اتفاق استفاده می شود. و بعمین دلیل در تحلیلهای قابلیت اطمینان کاربرد زیادی دارد.



اگر متغیر تصادفی ای که نشان دهندة مدت زمانی که یک مؤلفه خراب می شود، در نظر گرفته شود. آنگاه احتمال اینکه مؤلفه تا زمان خراب شود عبارتست از:

(29)

و احتمال اینکه مؤلفه تا زمان خراب نشود عبارتست از:

(30)



که به بترتیب تابع عدم اطمینان بخشی و تابع اطمینان بخشی می گویند.

بدین ترتیب اگر تابع چگالی احتمال متغیر تصادفی باشد داریم:

(31)

و







بنابراین داریم:

(33)

یا

(34)

احتمال خرابی بین زمانهای عبارتست از:

(35)



نرخ خرابی یا نرخ خطر(): عبارتست از حد احتمال اینکه مؤلفة تحت تحلیل در فاصلة



خراب شود مشروط به آنکه در زمان سالم باشد. یعنی:

(36)



(37)




محاسبة بر حسب نرخ خطر احتمال وقوع خرابی در واحد زمان:



از معادلة 37 داریم:












(38)



اکنون بکمک روابط 37 و 38 می توان تابع چگالی احتمال متغیر تصادفی را محاسبه نمود:

(39)



در صورتیکه نرخ خرابی ثابت و برابر باشد ()، آنگاه داریم:



(40)

و

(41)



همچنین اگرنرخ خرابی ثابت باشد ()، می توان روابط بین و و را بصورت شکل3 به تصویر کشید:









مثال 7 : میانگین تعویض برای تابع نرمال :

شکست قطعه ای طبق تابع احتمال نرمال با میانگین 7 هفته و انحراف معیار 2 هفته صورت می گیرد. تعیین کنید در فاصله 9 هفته بطور متوسط چند بار ازکارافتادگی پیش خواهد آمد.

برای حل، ابتدا مشخص است که تابع چگالی احتمال زمانهای از کار افتادگی قطعه به صورت زیر است:



سپس برای استفاده از رابطه ، می توان فاصله T را برابر یک هفته اختیار نمود(T=1) و به صورت زیر به محاسبات ادامه داد:

ابتدا چونg(0)=0 ، لذا از رابطه داریم:



نکته : مقدار عددی سطح زیر منحنی نرمال را می توان ازجداول نرمال که در کتابها ی آمار واحتمال آمده است به دست آورد .

بدین ترتیب مقدار عددی به جای جمله انتگرال جایگزین شده و با رعایت همین ترتیب و استفاده متوالی از رابطه، می توان مقادیر g(2)، g(3) ، . . . را محاسبه نمود:



سپس :



آنگاه:



باادامه محاسبات و به طریق مشابه می توان g(9) را به دست آورد، جدول نتایج محاسبات را نشان می دهد.

n


0


1


2


3


4


5


6


7


8


9

g(n)


0


0.001


0.006


0.023


0.067


0.159


0.310


0.504


0.698


0.88

جدول : نتایج محاسبات عددی تابع تعویض برای تابع احتمال نرمال با میانگین 7 و انحراف معیار 2 هفته

چنانکه از جدول مشاهده می گردد، در فاصله 9 هفته بطور متوسط 868% از کار افتادگی می تواند قابل انتظار باشد.

تناوب تعویض یا حداقل هزینه :

در این قسمت، تعیین حداپتیمان تناوب تعویض پیشگیرا نه قطعات مورد ملاحظه قرار می گیرد. فرض کنیم این تناوب برابرTr باشد، یعنی اینکه عمل تعویض پیشگیرا نه قطعات بطور مرتب و در فواصل زمانی Tr انجام یابد. در این صورت متوسط تعداد ازکارافتادگی ها در فاصله زمانی (Tr و 0)، از رابطه، برابر (Tr)g خواهد بود. به این ترتیب علاوه بر تعویض پیشگیرانه ای که در زمان Tr انجام می گیرد، بطورمتوسط به تعداد (Tr)g تعویض نیز به سبب از کار افتادگی در فواصل تعویضات پیشگیرانه، می تواند قابل انتظار باشد.

از آنجا که عمل تعویض پیشگیرا نه مطابق برنامه صورت می گیرد، لذا هزینه تعویض پیشگیرانه ممکن است با هزینه تعویض به موجب از کار افتادگیهای اتفاقی تفاوت داشته باشد. به عنوان مثال عمل تعویض برنامه ریزی شده می تواند در اوقات فراغت (یا ایام تعطیل) انجام یابد، در حالیکه خوابیدگی دستگاه در اثر از کار افتادگی اتفاقی می تواند منشاء زیان واقع گردد. پس چنانچه فرض کنیم هزینه هر بار تعویض پیشگیرانه Cr و هزینه هر تعویض ناشی از خرابی اتفاقی Cf باشد، مجموع هزینه های مربوط به تعویض پیشگیرانه و تعویضات اتفاقی، در فاصله زمانی (Tr و 0) برابر (Tr) Cr+Cdgخواهد بود. لذا متوسط هزینه قابل انتظار در واحد زمان، (Tr)C، عبارتست از:



بطوریکه ملاحظه می شود، متوسط هزینه قابل انتظار در واحد زمان تابعی از تناوب تعویض پیشگیرانه، (Tr)، است. بنابراین حداپتیمان تناوب تعویض پیشگیرانه را می بایست چنان تعیین نمود که مقدار (Tr)C در رابطه حداقل شود. برای این منظور، چنانچه تابع تعویض (t)g از رابطه بدست آید، می توان با قرار دادن آن در رابطه مقدار t (یا Tr) که C(t) را حداقل نماید، تعیین نمود. درغیراینصورت می بایست با محاسبه عددی تابع تعویض از رابطه، قرار دادن آن در رابطه و محاسبه عددی (t)C، حداقل آنرا تعیین و به این ترتیب حداپتیمال تناوب تعویض پیشگیرانه را مشخص نمود.

مثال 8 : تناوب بهینه تعویض برای تابع احتمال نمائی

برای قطعه ای که از کار افتادگی آن مطابق با تابع توزیع نمائی صورت می پذیرد، چنانکه در مثال قبل (میانگین تعویض برای تابع نمائی) ملاحظه شد، از رابطه داریم:



که با جایگزینی آن در رابطه خواهیم داشت:



مشتق اول عبارت فوق به صورت زیر است:



یعنی:



مشتق دوم نیز متعاقباً به صورت زیر خواهد بود:



زیرا زمان t و هزینه تعویض Cr هر دو مقادیر مثبتی هستند. شکل نیز منحنی نمایش تابع(t)C را نشان می دهد. چنانکه از این شکل و یا روابط و ملاحظه می گردد، تناوب تعویض پیشگیرانه بینهایت، حداقل هزینه را ایجاب می نماید. به بیان دیگر، برای قطعاتی که زمان شکست آنها از تابع توزیع نمائی تبعیت دارد، هیچگونه تعویض پیشگیرانه ای موجب تامین حداقل هزینه نخواهد بود، بلکه می بایست قطعه را به محض از کار افتادگی تعویض نمود.

شکل: منحنی نمایش تغییرات متوسط هزینه در واحد زمان نسبت به زمان تعویض پیشگیرانه برای تابع احتمال نمائی

مثال 9 :تناوب بهینه تعویض با تابع احتمال نرمال

شکست قطعه ای طبق تابع احتمال نرمال با میانگین 7 هفته و انحراف معیار 2 هفته صورت می گیرد. اگر هزینه هر بار تعویض پیشگیرانه 10000 ریال و هزینه هر تعویض ناشی از خرابی اتفاقی قطعه( منجمله هزینه ناشی از خوابیدگی دستگاه) 30000 ریال باشد، مطلوبست تعیین تناوب بهینه تعویض قطعه بنحوی که حداقل متوسط هزینه تعویض در واحد زمان تحمیل گردد.


تاریخ ارسال: پنج‌شنبه 14 بهمن 1395 ساعت 16:31 | نویسنده: saeed | چاپ مطلب 0 نظر

گزارش کارآموزی در تعمیرگاه خودرو (سیستم سوخت رسانی خودرو)

گزارش کارآموزی در تعمیرگاه خودرو (سیستم سوخت رسانی خودرو) در 43 صفحه ورد قابل ویرایش
دسته بندی گزارش کارآموزی و کارورزی
بازدید ها 15
فرمت فایل doc
حجم فایل 5211 کیلو بایت
تعداد صفحات فایل 43
گزارش کارآموزی در تعمیرگاه خودرو (سیستم سوخت رسانی خودرو)

فروشنده فایل

کد کاربری 6017
کاربر

گزارش کارآموزی در تعمیرگاه خودرو (سیستم سوخت رسانی خودرو) در 43 صفحه ورد قابل ویرایش


سیستم سوخت رسانی انژکتوری:

1ـ واحد کنترل کننده الکترونیکی Ecu) موتور(

2 ـ سنسور دور موتور

3 ـ سنسور فشار هوای منیفولد

4 ـ پتانسیومتر دریچه گاز

5 ـ سنسور دمای آب

6 ـ سنسور دمای هوای ورودی

7 ـ سنسور سرعت خودرو

8 ـ اکسیژن سنسور (فقط در خودرو پژو 206 وجود دارد)

9 ـ باتری

10 ـ رله دوبل (در خودرو پژو 206 مالتی پلکس وجود ندارد)

11 ـ کویل دوبل

12 ـ باک بنزین

13 ـ پمپ بنزین

14 ـ صافی بنزین

15 ـ ریل سوخت

16 ـ رگولاتر فشار سوخت (در خودرو پژو 206 بر روی پمپ بنزین نصب شده است . فشار آن در پژو پارس با سیستم مگنتی مارلی5/2 بار و پارس وسمند با سیستم ساژم حدود 3 بار وپیکان انژکتوری 5/3 بار است)

17 ـ انژکتور

18 ـ مخزن کنیستر (در خودروهای ما نصب نشده است)

19 ـ شیر برقی کنیستر (در خودروهای مانصب نشده است )

20 ـ دریچه گاز

21 ـ گرم کن دریچه گاز (فقط در خودروهای پارس وسمند نصب شده است)

22 ـ موتور مرحله‌‌‌‌ای دور آرام

23 ـ لامپ اخطار سیستم جرقه و انژکتور

24 ـ سوکت اتصال به دستگاه عیب یاب

25 ـ سنسور ضربه

26 ـ سوییچ فشار فرمان هیدرولیک (فقط در خودرو پژو 206 وجود دارد)










اجزایی که به E.C.Uپیغام ارسال می‌‌‌‌‌‌کنند:

BSI/8221 ـ ایموبیلایزر

1805 ـ رله دوبل سوم (در خودر ما موجود نیست)

1304 ـ رله دوبل (در خودرو 206 مالتی پلکس وجود ندارد)

7001 ـ سویچ فشار فرمان هیدرولیکی( فقط در خودرو 206 وجود دارد)

BBOO ـ باتری

80 ـ کلید AC کولر

C001 ـ کانکتور اتصال به دستگاه عیب یاب

1120 ـ سنسور ضربه

1313 ـ سنسور دور موتور

1312 ـ سنسور فشار هوای مانیفولد

(در خودرو 206 سنسنور فشار و سنسور دمای هوا در یک مجموعه قرار گرفته است.)

1316 ـ پتانسیومتر دریچه گاز

1220 ـ سنسور دمای آب

1240 ـ سنسور دمای هوای ورودی

1350 ـ اکسیژن سنسور ( فقط در خودرو 206 وجود دارد)

1620 ـ سنسور سرعت خودرو

موتور مرحله‌‌ای دور آرام :

این قطعه جریان هوای دریافتی موتور از دریچه گاز را در حالتهای زیر توسط E.C.U کنترل می‌‌کند.

1 ـ ایجاد حالت ساسات در زمان سرد بودن موتور

2ـ تنظیم دور آرام در زمان گرفتن بار اضافی از موتور (کولرو….)

3 ـ تنظیم مخلوط سوخت و هوای در دور آرام

4 ـ جلوگیری از بسته شدن سریع مسیر هوای زمانی که سرعت‌‌های بالا راننده به طور ناگهانی پا را از روی پدال گاز بر می‌‌‌دارد.

مکانیزم عملکرد موتور مرحله‌‌‌ای دور آرام :

موتور مرحله‌‌‌‌ای دور آرام پالس‌‌‌‌های 12 ولتی ارسالی توسط E.C.U را به حرکت خطی در راستای محور طولی موتور مرحله‌‌‌ای تبدیل کرده تا مقدار جریان هوای اضافی را تنظیم کند.کورس حرکتی آن 8MM بوده و 200 مرحله دارد که هر مرحله آن 04/ میلیمتر است.سیم پیچ اول پایه‌‌‌ های B وC سیم پیچ دوم و مقاومت هر یک از سیم پیچها 53 اهم است.

سنسور فشار هوای منیفولد (MAP SENSOR) :

سنسور فشار هوای مانیفولد در خودرو پژو 206 نسل جدیدی از سنسورها می‌‌‌‌‌‌‌‌باشد که سنسور دمای هوای ورودی هم ضمیمه آن است.مجموعه سنسور فشار هوای مانیفولد فشار و دمای هوای مانیفولد را دائماً اندازه‌‌‌‌‌‌‌گیری می‌‌‌‌‌‌‌کند.ولتاژ تغذیه آن 5 ولتی وتوسطE.C.U تأمین می‌‌‌‌‌‌‌‌‌‌‌‌شود.ولتاژ بازگشتی از سنسور متناسب با فشار اندازه‌‌‌‌گیری شده توسط پیزوالکتریک(مقاومت متغییر با فشار) تغییر می‌‌‌‌‌‌‌‌‌‌کند.

E.C.U از این اطلاعات برای محاسبه موارد زیر استفاده میکند:
ـ اندازه‌‌‌‌‌‌گیری جرم هوای ارسال شده به موتور

ـ تغییر نسبت سوخت به هوا متناسب با بار وارده به موتور و فشار هوای محیط

ـ آوانس جرقه

سنسور فشار هوای منیفولد در اندازه‌‌‌‌‌گیری کمیت‌‌‌‌‌های فوق در موارد ذیل موثر است:
1 ـ در حالت سوییچ باز

2 ـ در حالت تمام بار (دور پایین موتور) زمانی که از سربالایی‌‌‌‌ها عبور می‌‌‌‌‌‌کنیم.

جرم هوای ارسال شده به موتور متناسب با عوامل زیر تغییر می‌‌‌‌‌کند:
1 ـ فشار اتمسفر

2 ـ دمای هوای ورودی

3 ـ دور موتور

نکته : اگر این سنسور درست کار نکند E.C.U دیگر قادر نخواهد بود میزان هوای ورودی را بطور دقیق تعیین کنند.



ب ـ ویژگیهای الکتریکی :

تغذیه توسط E.C.U بوده و نحوه اتصال پایه‌‌‌‌ها به شرح زیر می‌‌‌‌‌‌باشد.

پایه 1: ولتاژ 5 ولتی ارسالی از E.C.U

پایه2: سیگنال ارسالی به E.C.U

پایه 3: سیم شیلد دار که در بعضی از مدل‌‌‌ها وجود دارد.

محل قرار گرفتن آن در بلوک سیلندر روی سیلندر شماره 2 می‌باشد. ‌‌ این سنسور از نوع پیزوالکتریک می‌‌باشد که ضربات وارد بر پوسته را به پالس الکتریکی تبدیل کرده وبه E.C.U می‌‌‌فرستد.

نکته: وجود این ضربه باعث بالا رفتن درجه حرارت قطعات و صدمه دیدن آنها می‌‌شود.

نحوه آزمایش تاک سنسور یا سنسور ضربه:

ابتدا تاک سنسور را از جای خود باز می کنیم وچند ضربه روی تاک سنسور می‌‌‌زنیم( در حالت موتور روشن) برگه کارکرد موتور تأثیرگذاشت سالم است و در غیر این صورت خراب است.

اکسیژن سنسور:

(این سنسورفقط در خودروپژو206 وجود دارد.)

الف ـ وظایف

محل نصب آن روی مانیفولداگزوز بین موتور ومبدل کاتالیزوری است.

ترکیب شدن هیروکربن‌‌‌های نسوخته با اکسیژن مقدار اکسیژن را در داخل گازهای خروجی کاهش داده در نتیجه باعث زیاد شدن ولتاژ بازگشتی بهE.C.U می‌‌‌شود.

E.C.Uاز اطلاعات دریافتی از اکسیژن سنسور برای موارد زیر استفاده می‌کند:

ـ محاسبه نسبت مخلوط سوخت وهوا

ـ تعدیل غنی بودن مخلوط سوخت وهوا
ب ـ شرح

توابع مربوط به اندازه گیری سوخت وهوا به طور دائمی درE.C.U ذخیره شده و اطلاعات مربوط به غنی بودن یا رقیق بودن مخلوط سوخت وهوا به شکل ولتاژی بین صفر تا یک ولت از اکسیژن سنسور دریافت می‌‌‌‌‌شود.

مخلوط رقیق: ولتاژ ارسالی از اکسیژن سنسور=V 1/0

مخلوط غنی: ولتاژ ارسالی از اکسیژن سنسور=V9/0

گرمکن به کار رفته داخل سنسور اجازه می‌‌‌‌‌‌دهد که دمای کارکردآن سریعاًبه 300 درجه سانتیگراد برسد.

ج ـ ویژگی‌‌‌‌‌های الکتریکی:

سنسوربا یک سوکت چهار پایه به دسته سیم اصلی متصل شده است.

تعیین محل اتصال پایه‌های سنسور:

پایه1:ولتاژ12ولتی تغذیه

پایه2: منفی یااتصال بدنه

پایه3:سیگنال مثبت

پایه4:سیگنال منفی

سنسور سرعت خودرو:

این سنسور از نوع اژمال می‌‌‌‌باشدکه برروی کابل سرعت سنج در محور خروجی گیر‌‌بگس قرار دارد و بوسیلهء ولتاژ12 ولت تغذیه می‌‌شود این سنسور اطلاعات را بهE.C.U (8 پالس در هردور از سرعت km/h 2)می‌‌دهدکه تعیین کننده ضریب نسبت دنده می‌‌باشد و برای بهبود عملکرد خودرو و مورد استفاده قرار می‌‌گیرد.

نحوه عملکرد:

این سنسور تقریباً شبیه سنسور دور موتور می‌باشد یعنی یک چرخ دنده با هشت دندانه که وقتی به حرکت در می‌‌‌آید داخل سنسور ولتاژ پالسی ایجاد می‌شود . که فرکانس آن به سرعت خودرو بستگی دارد و E.C.U از روی فرکانس این ولتاژ می‌‌‌تواند سرعت خودرو را محاسبه کندوبا مقایسه این سرعت با دور موتور می‌‌تواند تشخیص دهد در جاده کفی ـ سربالایی ویا سرازیری قرار دارد.

این قطعه جربان هوا به داخل دریچه گاز را کنترل می کند در صورتی که :

- تهیه یک جریان هوای اضافه در مرحله سرد راه اندازی

- کنترل دور آرام ، مطابق با بار موتور و حرارت آن

- بهبود حالت های گذرا ( مثل روشن شدن کولر )

این قطعه یک موتور DC مرحله ای می باشد که به هر بار ولتاژ مثبت و منفی ( بدنه ) هایی که به پایه هایD,C,B,A آن داده می شود ، شفت این موتور یک پله (Step) به راست و یا چپ می چرخد ( لازم به ذکر است که ولتاژ مثبت و منفی با یک منطق خاصی به پایه های این استپ موتور اعمال می شود .)

با توجه به اینکه شفت این موتور با هربار چرخش 1.8 درجه به چپ یا راست می گردد، در نتیجه به 200 مرحله یک دور کامل می زند و از طرفی شفت این موتور به یک میله مارپیچ متصل است که به هر پله (STEP) ، 0.04 mm به جلو یا عقب میرود .

انژکتورها :

انژکتورها از نوع کنترل الکترو مغناطیسی می باشند .

پالس های الکتریکی که از طرف ECU (1320) فرستاده می شود یک میدان مغناطیسی در سیم پیچ بوبین ایجاد می کند ، در اثر این میدان مغناطیسی هسته جذب می گردد و سوزن انژکتور از جای خود حرکت می کند .

سوخت فشرده به سرعت بالا از سوپاپ تزریق می گردد .

موتورهای XU7JP به انژکتورهایی مجهزند که در خط تغذیه سوخت پنهان می باشند و از کناره تغذیه می شوند .

چهار عدد پایه 1 انژکتورها به هم ، متصل و از طریق سیم شماره 1320 به پایه 18 ، ECU ( 1320) متصل می باشند و از چهار عدد پایه 2 انژکتورها به هم متصل و از طریق سیم شماره 1224/1210 به پایه 4 رله دوبل ( 1304) متصل می باشند و ولتاژ مثبت باتری را از همین طریق رله دوبل ( 1304) دریافت می کند و با منفی ( بدنه ) شدن ( منفی مقطع یا پالسی) پایه ECU ,18 ( 1320) انژکتورها با توجه به اینکه سوخت با فشار پشت آن ها قرار دارد ، شروع به پاشش سوخت می کند .استپ موتور ( 1255) از طریق سیم های 1244، 1245، 1246 ، 1247 به پایه های 3 ، 2، 20، 21 از ECU (1320) متصل است .


تاریخ ارسال: سه‌شنبه 12 بهمن 1395 ساعت 16:03 | نویسنده: saeed | چاپ مطلب 0 نظر

تحقیق بررسی تقسیم بندی یک سیستم قدرت الکتریکی

تحقیق بررسی تقسیم بندی یک سیستم قدرت الکتریکی در 44 صفحه ورد قابل ویرایش
دسته بندی الکترونیک و مخابرات
بازدید ها 2
فرمت فایل doc
حجم فایل 35 کیلو بایت
تعداد صفحات فایل 44
تحقیق بررسی تقسیم بندی یک سیستم قدرت الکتریکی

فروشنده فایل

کد کاربری 6017
کاربر

تحقیق بررسی تقسیم بندی یک سیستم قدرت الکتریکی در 44 صفحه ورد قابل ویرایش


بخش های اساسی هر سیستم قدرت الکتریکی :

هر سیستم قدرت الکتریکی از سه بخش اساسی به شرح زیر تکمیل می شود.

1- مراکز تولید نیروگاه ها: این مراکز انرژی الکتریکی را تولید کرده و از طریق خطوط انتقال آن را به مراکز تولید منتقل می کنند .

2- سیستم های انتقال : جهت انتقال انرژی الکتریکی از مراکز تولید که اغلب در فواصل دور از مراکز تولید که اغلب در فواصل دور از مراکز بار قرار گرفته اند و به منظور انتقال قدرت های بزرگ ، از سیستم های انتقال استفاده می شود .

3- سیستم های توزیع انرژی الکتریکی مورد نیاز مشترکین را با ولتاژ اولیه توزیع یا ولتاژ ثانویه توزیع تامین می کنند .

در شکل زیرشمای کلی و تک خطی یک سیستم قدرت نشان داده شده است.










فشار ضعیف ترانس کاهنده ترانس کاهنده ف.توزیع ترانس کاهنده انتقال ترانس افزاینده ژنراتور

6-11-20 KV 132,230 400KV ,63,66 KV 20 KV 400 3 220 1 20 /400

20KV/132KV 132KV 66/20 KV

20KV /230 KV 230 /66 ,63 KV 63/20 KV

20 KV/ 400 KV 400 /66 ,63 KV

ولتارژهای مورد استفاده در مملکت ما و تقسیم بندی آن ها از نظر انتقال و توزیع و فوق توزیع .

ولتاژهای مورد استفاده در مملکت ما به شرح ذیل است .

400V,6V,11KV,20KV,33KV.63KV,66 KV,132KV,230KV,400KV

توضیح 1) ولتاژهای تا 1000 ولت را فشار ضعیف واز 1KV تا 50KV را فشار متوسط و از 50KV با بالا را فشار قوی می نامند .

توضیج 2) ولتاژهای 6KV و 11KV در برخی از کارخانجات مورد استفاده قرار می گیرند.

توضیح 3) ولتاژهای 20KV . 33KV ولتاژهای اولیه توزیع می شوند .

نکته: وزارت نیرو 20KV را به عنوان ولتاژ اولیه توزیع استاندارد نموده است ولی در برخی از نقاط ایران 33KV نیز وجود دارد .

توضیح 4) ولتاژهای 132kv,66kv, 63kv ولتاژهای فوق توزیع محسوب می شوند.

توضیح 5) ولتاژهای 132kv گاهی نیز به عنوان ولتاژ انتقال ولی 230kv و 400kv ولتاژهای انتقال محسوب می شوند .

انواع پست (از نظر قرار گرفتن تجهیزات در داخل یا خارج پست )

پست های سر پوشیده : (بسته) که قسمت سوئیچ یا در آن در داخل محفظه شیشه ای قرار دارند که داخل آن محفظه گاز sf6 قرار دارد که این گاز به عنوان عایق مورد استفاده قرار می گیرد - مانند پست 400 بندرعباس و پست 400 فولاد مبارکه .

از این پست ها در محل هایی استفاده می شود که فضا کم باشد یا هوای اطراف پست بنا به دلیلی آلوده باشد . طبیعاً در پست های سر پوشیده که داخل محفظه شیشه ای قرار دارد فاصله بین تجهیزات کمتری می باشد .

پست های باز : پست هایی هستند که قسمت سوئیچ یارد فضای آزاد قرار می گیرد که در این پست ها عایق هوای اطراف می باشد .

قسمت سوئیچ یارد : منطقه ای از پست که تجهیزات کلید زنی تابش بارها و کلید های قدرت و وسایل اندازه گیری در آن قمست قرار دارد.

شناسنامه ایستگاه

1) سال احداث : 1361

2) مجری ساختمانی : شرکت امانی ساختمانی توانیر

3) شرکت سارنده تجهیزات : اکسپورت - ایمپورت

4) کشور : آلمان شرقی

5) مونتاژ : شرکت پیمانیر

6) سال بهره برداری : طرح موقت : 1365 - طرح دائم : 1367

7) ظرفیت بار : 250 مگا وات آمپر

8) مساحت کل پست : 90000 متر مربع

9) مساحت اتاق فرمان : 400 متر

10) تعداد فندانسیون : 624 قطعه

11) تعداد ترانس قدرت : 2 دستگاه

12) تعداد خط ورودی : دو خط 230 کیلو ولت

13) تعداد خط خروجی : 14 خط 63 کیلو ولت

حد اکثر بار 140 مگا وات ساعت (اسفند 1373) - نسبت تبدیل:20/63/230 kv

نوع ترانس قدرت : کاهنده V,E,M - نوع کلید فشار قوی : اسپرن شو Minoil و sf6 اینرگوین وست - تعداد کلید قدرت 230 KV : (4 دستگاه سه فاز ) جمعاً 12 عدد - تعداد کلید قدرت 63 : 18 دستگاه (سه فاز) جمعاً 54 کلید - تعداد سکسیونر 63 : 81 عدد (سه فاز ) جمعاً 243 عدد - تعداد ترانس جریان 230 : 6 مجموعه (سه فاز ) جمعاً 18 عدد - تعداد ترانس جریان 63 : 22 مجموعه (سه فاز) جمعاً 66 عدد - تعداد ترانس ولتاژ 230: 4 مجموعه (سه فاز ) جمعاً 12 عدد - تعداد ترانس ولتاژ 63 : 18 مجموعه (سه فاز ) بعلاوه یک دستگاله تک فاز جمعاً 55 عدد - تعداد C.V.T 230 : 4 دستگاه - برق اضطراری مصرف داخلی : دیزل ژنراتور یا قدرت 250 کیلو وات ساعت - نوع رله : G.E.G - تعداد برقگیر 230 : 12 دستگاه - طرح توسعه خطوط 63: 4 خط (بی) 63KV - سال اجرای طرح توسعه : 1370 - سال بهره برداری طرح توسعه : 1372 - تست تانژانت دلتا : 1368- 1373- تست ترموویژن : 1373- تحویل موقت ترانس ک 1370 - تحویل دائم ترانس : 1373 - عایق بندی طرف 20 کیلو ولت ترانس ها : 1373 - عایق بندی داخل پانل 380ولت : 1371 - تعویض اینترلاک خط خروجی : 1371 - نصب تلفن D.T.S : 1373 - تعویض سیستم بوشلینگ نوترال ترانس : 1374 - در مدار قرار گرفتن ریکلزر خط خروجی : 1372- احداث فنداسیون ترانس های توسعه : 1372 - نصب تجهیزات مرکز تلفن E.M.S : 1370 - تنظیم پت ترانس های کمکی روی پست 1 : 1368-





کلاس دقت CT :

این عدد میزان خطای هر CT را بیان می کند و به صورت یا نمایش داده می شود . آلفا درصد خطای CT به ازای برابر شدن جریان و بیانگر نوع جریان CT است .

P : برای CTهای حفاظت (Protection)

M :برای ct های اندازه گیری (measuring)

N : چند برابر شدن جریان

روی بدنه ترانس جریان نوشته هایی است که آنها را شرح می دهیم :

IN : جریان نامی ترانس جریان .

I1N : جریان نامی اولیه.

I2N : جریان نامی ثانویه .

نسبت جریان حرارتی دائمی : مثلاً 1/2IN را یعنی 20% اضافه بار دائمی که CT می تواند تحمل کند و براساس سفارش می توان 5/1 تا 2 برابر اضافه بار گرفت (تذکر : توصیه می شود که از نسبت CT آمپر بیشتری کشیده نشود ) .

مشخصات CT

1) یک ترانس جریان کاهنده جریان می باشد .

2) دارای قدرت کم می باشد

3) سیم پیچ اولیه به مدار قدرت وصل است یا در مسیر عبور جریان متصل است .

4) سمت ثانویه آنها از طریق تجهیزات اندازه گیری مناسب اتصال کوتاه می باشد .(نظیر کنتورها و روله ها ، کنترلها) .

5) عایق بندی مناسب مدارهای اندازه گیری و حفاظتی از ولتاژ

6) حفاظت وسایل از اضافه بار

ترانس جریا ن 230 کیلو ولت پست : ترانس جریان 230 این پست ساخت کشور آلمان شرقی (طبق استانداردV.E.M) و در شش مجموعه سه فاز (مجموعاً 18 عدد ) مورد بهره برداری قرار گرفت . نسبت تبدیل و کلاس دقت این ترانس به شرح زیر است .

400-800-1200/5 45VA CL : /5

600-1200 / 5 45VA CL : 5P56

CTهای پست از زبان اپراتور

تذکر 1 : VA ها برای مصرف خود CT است

تذکر 2 : منظور از CL کلاس دقت CT است

تذکر 3 : منظور از عبارت 5P56 این است که اگر جریان نامی ای برابر 56 از CT عبور می کند خطای آن 5 می باشد (در صد خطا ).

توضیح اینکه 230Ct پست از نوع کد پائین است که در آن جهت خنک کردن و عیاق بندی سیم پیچ ها از روغن استفاده شده و دارای 5 کد می باشد که از یک کد برای اندازه گیری و از کدهای دیگر جهت حفاظت (تغذیه رله ها) استفاده می شود . جنس بدنه CT از سرامیک مخصوص می باشد . شکل ظاهری آن یه صورت دوقلو می باشد(چون که پایین است) و سیم پسچ از یک طرف وارد و از طرف دیگر خارج می شود . جهت خطوط 230 کیلو وات فقط از کدهای 5/800 استفاده می شود .

2-سلکتور سوئیچ حالت یک و دو : (رنگ آبی)

حالت یک REOTE : دژنکنور از راه دور (اتاق فرمان ) فرمان وصل یا قطع می دهیم .

حالت دو LOCAL : در اینحالت دژنکتور فقط از داخل محوطه فرمان می گیرد (وقتی است که دژنکتور از اتاق فرمان قطع شده باشد ). برای حالت هایی پیش بینی شده که گروه تعمیرات بخواهد تست هایی روی کلید در داخل محوطه انجام دهند و نیاز به قطه و وصل کلید باشد .

1- سلکتور سوئیچ حالت صفر و یک : مربوط به هیترهای داخل پانل های مربوط به محوطه است که در فصل بهار و تابستان در حالت صفر قرار داده می شود (چون هوا گرم است ) و در اوایل زمستان که هوا سرد است و نیاز به تجهیزات پانل داخل دژنکتور گرم باشند در حالت یک قرار داده می شود .

SIGNAL CHEKING

این سوئیچ سه حالت دارد ومربوط به آلارم ها است .

حالت صفر :هیچ علامتی مشاهده نمی شود .

حالت یک : برای با خبر شدن از عیوب آلارم های مشخص شده می باشد . در این حالت اگر آلارم روشن شود مشخص می شود که عیبی در آلارم مربوط وجود دارد در غیر این صورت نشان دهنده این است که هیچ عیبی روی تجهیزات وجود ندارد (مشاهده : آلارم روشن نشد ).

حالت دو : برای تست چراغ آلارم های داخل پانل این سوئیچ در حالت دو قرار می گیرد تا مشاهده شود چراغ آلارمی دچار عیب نشده باشد .

تذکر : حالت یک مهمترین حالت برای ما می باشد .

آلارم ها :

GASALARM : در صورتی که سطح گاز مربوط به کلید (SF6) تغییر کند این لارم ظاهری می شود .

AIR ALARM : این آلارم مربوط به فشار هوای کمپرسور می باشد که این فشار روی 75/1 یا 8/1 ثابت است اگر این فشار از حدود 7/1 پایین تر بیاید آلارم ظاهر می شود و اگر به 6/1 برسد خط تریپ می دهد که در حالت آلارم چراغ مربوط روشن می شود که اپراتور در حالت بازدید در می یابد که فشار هوا پایین آمده .

LOCKIG OF AIR & GAS :

این آلارم نشان می دهد که گاز و هوا حالت بلوک به وجود آورده اند یعنی داخل لوله های رابط بین کلید و کمپرسور یخ زدگی به وجود آمده است .

تذکر : در حالت بلوکه هوائی بین کمپرسور و تانک کمپرسور رد و بدل نمی شو د .

MOTOR OVER LOAD : در هنگام عیب بر روی موتور کمپرسور این آلارم ظاهر می شود (جدیداً موتور کمپرسور پست به علت کار و زیاد سوخت و این آلارم ظاهر شد).

OIL LEVEL : این سطح روغن مربوط به موتور کمرسور را نشان می دهد اگر سطح روغن به هر دلیلی کم شود این آلارم ظاهر می شود .

نمراتور ها :

1- نمراتور مربوط به عملکرد کلید : قطع و وصل کلید را از هنگام بهره برداری آن نشان می دهد (مشاهده : نمراتور این کلید از هنگام بهره برداری 130 مورد قطع و وصل را نشان می دهد ) این نمراتور ماهانه یاداشت می شود .

2- نمراتور مربوط به عملکرد کمپرسور (ساعت کمپرسور) : نشان می دهد که کمپرسور چند ساعت در شبانه روز کار کرده است . هر روز توسط اپراتور یاداشت می شود و اپراتور متوجه می شود که کمپرسور در 24 ساعت چقدر کار می کند .

درجه بندی محفظه کنترل دژنکتور : یک درجه بندی در محفظه کنترل قرار دارد که فشار گاز را نشان می دهد حالت های مختلف این درجه بندی عبارتند از 1- رنگ زرد : حالت آلارم 2- رنگ سبز : حالت نرمال 3- رنگ قرمز : حالت تریپ (حد تریپ دژنکتور 4/10 است ) یعنی اینکه اگر از 4/0 کمتر شد فشار گاز نشان می دهد که نمی تواند در حالت قطع جرقه ایجاد شده را سرد کند و قدرت سیستم خنک کنندگی آن پائین می آید و احتمال آن می رود که کلید دچار انفجار شود بخاطر همین امر فشار گاز تا 4/0 که پائین آمد کلید خود به خود آن را قطع می کند .







سکسیونر ارت :

سکسیونری است که جهت زمین کردن ولتاژهای ذخیره در تجهیزات به کار برده می شود که از یک طرف به سیم ارت پست و از طرف دیگر هنگام بستن به تجهیزات مجزا شده از سیستم وصل می شود .

سیم های ارت دستی : مووقعی استفاده می شود که اگر بخواهیم بر روی یک دستگاه یا تجهیز تعمیراتی انجام دهیم برای زمین کردن ولتاژ های ذخیره در آن دستگاه از آن استفاده می کنیم و در جاهایی به کار برده می شود که سکسیونر ارت وجود نباشد .

فیوز کاتد : همان طور که می دانیم کلیدهای فشار قوی مثل بریکرها به وسیله رله های حفاظتی فرمان می گیرند و موقعی که عیبی روی سیستم ایجاد شود و باعث قطع کلید می شود و لی در ولتاژهای پایین مثل ترانس 20KV چون استفاده کردن از رله های حفاظتی و بریکر ها مقرون به صرفه نیست از فیوز کاتد استفاده می کنند که برروی ترانس 20KV (قبل از سکسیونر ) قرار می گیرد که اگر فالتی بخواهد بر ترانس اعمل شود توسط این فیوز دیده می شود و به اصطلاح فیوز کاتد عمل می کند (می پرد) و باعث می شود که ترانس از مدار خارج شود .


تاریخ ارسال: جمعه 8 بهمن 1395 ساعت 14:59 | نویسنده: saeed | چاپ مطلب 0 نظر

مقاله بررسی سیستم کنترل

مقاله بررسی سیستم کنترل در 24 صفحه ورد قابل ویرایش
دسته بندی الکترونیک و مخابرات
بازدید ها 1
فرمت فایل doc
حجم فایل 18 کیلو بایت
تعداد صفحات فایل 24
مقاله بررسی سیستم کنترل

فروشنده فایل

کد کاربری 6017
کاربر

مقاله بررسی سیستم کنترل در 24 صفحه ورد قابل ویرایش


مقدمه:

هر سیستم کنترلی را به سه بخش اصلی می‌توان تقسیم کرد: ورودی بخش پردازشگر و خروجی سیگنالهای ورودی توسط مبدل‌ها که کمیت‌های فیزیکی را به سیگنال‌های الکترونیکی تبدیل می‌کنند فراهم می‌شوند. یک سیستم کنترل باید بتواند بر طریقه عملکردی یک فرآیند دخالت و تسلط داشته باشد. این کار با استفاده المان‌های خروجی، از قبیل پمپ‌ها، موتورها، پیستون‌ها، رله‌ها و … انجام می‌شود.

یک طرح کنترلی به دو روش قابل اجرا است:

با استفاده از سیستم‌های کنترل غیرقابل تغییر توسط اپراتور و نیز با استفاده از کنترل کننده‌های قابل برنامه‌ریزی.

رله‌ یکی از قطعات مهم در بیشتر سیستم‌های کنترل مدرن است. این قطعه‌ یک سوئیچ الکتریکی با ظرفیت جریانی بالاست. یک سیستم رله‌ای ممکن است شامل چند صدیا حتی چند هزار کنتاکت باشد.


کنترل‌کننده‌های قابل برنامه‌ریزی (PLC)ها:

PLCها به عنوان جانشینی برای سیستم‌های منطقی رله‌ای و تایمری غیرقابل تغییر توسط اپراتور طراحی شدند تا به جای تابلوهای کنترل متداول قدیمی استفاده شوند. این کار به وسیله برنامه‌رزی آن‌ها و اجرای دستورالعمل‌های منطقی ساده که اغلب به شکل دیاگرام نردبانی است، صورت می‌گیرد. PLCها دارای یک سری توابع درونی از قبیل: تایمرها و شمارنده‌ها و شیفت رجیسترها می‌باشند که امکان کنترل مناسب را‏، حتی با استفاده از کوچک‌ترین PLC نیز، فراهم می‌آورند.

یک PLC با خواندن سیگنال‌های ورودی، کار خود را شروع کرده و سپس دستورالعمل‌های منطقی (که قبلاَ برنامه‌ریزی شده و در حافظه جای گرفته است) را بر روی این سیگنال‌های ورودی اعمال می‌کند و در پایان، سیگنال‌های خروجی مطلوب را برای راه‌اندازی تجهیزات و ماشین‌آلات تولید می‌نماید. تجهیزات استانداردی درون PLCها تعبیه شده‌اند که به آن‌ها اجازه می‌دهد مستقیماَ و بدون نیاز به واسطه‌های مداری یا رله‌ها، به المان خروجی یا محرک (actuator) و مبدل‌های ورودی (مانند پمپ‌ها و سوپاپ‌ها) متصل شوند.

با استفاده از PLCها، اصلاح و تغییر یک سیستم کنترل بدون نیاز به تغییر محل اتصالات سیم‌ها ممکن شده است.

برخی ویژگی‌های خاص، آن‌ها را ابزاری مناسب جهت انجام عملیات کنترل صنعتی نموده است. برخی از این ویژگی‌ها عبارتند از:

l تجهیزات حفاظت کننده‌ها PLCها از نویز و شرایط نامساعد محیطی

l ساختار PLCها، که به سادگی امکان تعویض یا افزودن واحد یا واحدهایی را به PLC می‌دهد. (مثلاَ واحد ورودی/ خروجی)

l اتصالات استاندارد ورودی/ خروجی و نیز سطوح سیگنال استاندارد

l زبان برنامه‌نویسی قابل درک و آسان (مانند دیاگرام نردبانی یا نمودار وظایف)

محدوده PLCهای در دسترس، از PLCهای جامع و کامل کوچک با 20 ورودی/ خروجی و 500 مرحله یا گام برنامه‌نویسی تا سیستم‌های مدولار با مدول‌های قابل افزایش را دربرگرفته است مدول‌ها برای انجام وظایفی نظیر:

l ورودی/ خروجی آنالوگ

l کنترل PID (تناسبی، انتگرال‌گیر و مشتق‌گیر)

l ارتباطات

l نمایش گرافیکی

l ورودی/ خروجی اضافی

l حافظه‌های اضافی و … استفاده می‌شوند.

PLCها، کامپیوترهایی ساخته شده به منظور خاص هستند که شامل سه قسمت اجرایی اصلی می‌باشند: پردازش، ورودی/ خروجی و حافظه. سیگنال‌ها از طریق ورودی به PLC فرستاده شده و آن‌گاه در حافظه، ذخیره می‌شوند. سپس سیگنال‌های خروجی به منظور راه‌اندازی تجهیزات مورد نظر، تولید می‌شوند.

در PLCهای کوچک‌تر، این عملیات توسط کارت‌های ویژه‌ای انجام می‌گیرند که به صورت واحدهای بسیار فشرده‌ای ساخته شده‌اند، در حالی که ساختار PLCهای بزرگتر به صورت مدولار با مدول‌هایی که بر روی شیارهای تعبیه شده بر روی دستنده نصب می‌شود، بنا گردیده است. این امر امکان توسعه سیستم را- در صورت ضرورت- به سادگی فراهم می‌آورد. در هر دوی این موارد بوردهای مداری ویژه‌ای، به سادگی تعویض یا برداشته می‌شود و امکانات تعمیر سیستم نیز به سادگی فراهم می‌آید.

CPU بر تمام عملیاتی که در PLC رخ می‌دهد‏، کنترل و نظارت دارد و دستورالعمل‌های برنامه‌ریزی شده و ذخیره شده را اجرا می‌کند.

تمام PLCهای مدرن برای ذخیره برنامه از حافظه‌های نیمه هادی مانند EPROM, RAM یا EEPROM استفاده می‌کنند.

عملاَ از RAM برای تکمیل برنامه مقدماتی و تست آن استفاده می‌شود، زیرا که امکان تغییر و اصلاح راحت برنامه را فراهم می‌آورد.

پس از این که یک برنامه تکمیل شد و مورد آزمایش قرار گرفت می‌توان آن را در PROM یا EPROM، که اغلب ارزانتر از قطعات RAM می‌باشند، بار (Load) کرد. برنامه‌ریزی PROM معمولاَ توسط یک برنامه‌ریز مخصوص صورت می‌گیرد.

PLC‌های کوچک معمولاَ تا حدی به دلیل ابعاد فیزیکی دستگاه دارای حجم حافظه محدود و ثابتی می‌باشند. حجم این حافظه‌ها بسته به تولیدکننده آن‌ها بین 300 تا 1000 دستورالعمل متفاوت است. این حجم حافظه ممکن است کمتر از آنی به نظر آید که مناسب جهت امور کنترلی باشد‏، اما تقریباَ حدود 90 درصد عملیات مورد نیاز کنترل‌های دودویی با کمتر از 1000 دستورالعمل قابل اجرا می‌باشند. بنابراین فضای حافظه لازم برای بیشتر کاربردها فراهم خواهد آمد.

PLCهای بزرگتر از مدول‌های حافظه‌ای استفاده می‌کنند که بین K1 تا K64 فضای حافظه را فراهم می‌آورند. این مدول‌ها امکان گسترش سیستم را با افزودن کارت‌های حافظه RAM یا PROM به PLC فرام می‌آورند.

معیار اولیه مشخص کننده اندازه PLCها، در قالب حجم حافظه برنامه و حداکثر تعداد ورودی و خروجی‌هایی که سیستم قادر به پشتیبانی از آن‌هاست. اما به منظور ارزیابی و محک مناب هر PLC، باید خصوصیات دیگری از آن، از قبیل نوع پردازشگر، زمان اجرای یک سیکل برنامه، تسهیلات زبان برنامه‌نویسی، توابع (از قبیل شمارنده، تایمر و …) قابلیت توسعه و … را نیز در نظر بگیریم.

معمولاَ، PLCهای کوچک و «مینی PLCها» به صورت واحدهای قدرتمند، کارآ و فشرده‌ای طراحی می‌شوند که قابل جاسازی بر روی، یا کنار تجهیزات تحت کنترل باشند. آن‌ها عمدتاَ به عنوان جایگزین سیستم‌های رله‌ای غیرقابل تغییر توسط اپراتور، تایمر، شمارنده و غیره مورد استفاده قرار می‌گیرند تا بخش‌های مجزا و منفرد کارخانجات یا ماشین‌آلات را کنترل کنند، اما می‌توان آن‌ها برای هماهنگ کردن عملکرد چند ماشین در تلفیق با یکدیگر سود جست.

- ماژول تغذیه:

دارای دو سایز 72*90*55 میلیمتر و 126*90*55 میلیمتر می‌باشد. با ورودی 85-246 ولت برای کارهای متفاوت در توانهای پائین مناسب است و دارای خروجی با رنجهای زیر می‌باشد:

لازم به ذکر است که این ماژولها علاوه بر Expand شدن به لوگو در موارد دیگر نیز مورد استفاده قرار می‌گیرند.

کارتهای حافظه:

آبی: قابل خواندن و نوشتن- عدم حفظ برنامه در هنگام قطع برق

زرد: قابل خواندن و نوشتن- حفظ برنامه در هنگام قطع برق

قرمز: فقط خواندنی- حفظ برنامه در هنگام قطع برق

کابل pc: به منظور اتصال ساده و مستقیم LOGO و pc جهت انتقال برنامه از LOGO به pc یا برعکس مورد استفاده قرار می‌گیرد.

سیم‌بندی:

در هنگام سیم بندی LOGO میبایست استاندارد زیر و موارد زیر رعایت شوند:

میبایست قطر سیم مصرفی 1.5 یا 2.5 باشد.

کوتاهترین فاصله برای سیم‌بندی در نظر گرفته شود.

مدارات AC, high voltage با سیکلهای کلیدزنی سریع و سیم‌هیا سیگنال low voltage از هم ایزوله شوند.

در صورت استفاده از برق سه فاز هر گروه از ورودیها به یک فاز خاص متصل شوند. برای یک گروه نمی‌توان از دو فاز اسفتاده کرد.

در LOGO نیاز به سیم ارت نیست. (بجز دو مورد زیر)

کارتهای آنالوگ باید زمین شوند.

در مدلهای 12/24 به دلیل نداشتن ایزولاسیون نیاز به زمین است.

برای ورودیهای آنالوگ از کابلهای بهم تابیده شده و حتی‌المقدور کوتاه استفاده نمائید.

از اتصال فازهای مختلف به ورودیهای LOGO پرهیز شود.

در LOGO با ورودی آنالوگ ورودیهای 7 و 8 نباید برای دیجیتال بکار برده شود.

15 و 16 برای ورودیهای سریع بکار می‌رود.

ماژولهای افزایشی ورودی سریع ندارند.

برای اتصال منبع تغذیه باید به مدارک موجود در قطعه برای سیم‌بندی توجه شود و از اتصال مازی منبع تغذیه و خروجی D.C بعلت وجود جریان معکوس پرهیز شود.

مدل 230 تغذیه مناسب برای ولتاژهای نامی 115V AC/DC؛ V 240 AC/DC می‌باشد، و مدلهای 12 و 24 ولت آن مناسب با ولتاژ 12 ولت DC و 24 ولت DC/ AC می‌باشد. در تغذیه DC استفاده از فیوز برای حفاظت لازم می‌باشد.

برنامه‌نویسی:

ماژول LOGO براساس قوانین مدارات منطقی کار می‌کند و شرایط برنامه‌پذیری آن به ورودیهای یک برنامه بستگی دارد و برنامه‌ریزی از دو طریق امکان‌پذیر است:

الف- با استفاده از نرم‌افزار خود LSC (LOGO SOFT COMFORT روی PC و انتقال آن از طریق کابل رابط به LOGO که در V3.1 این نرم‌افزار دو زبان برنامه‌نویسی FBD و LDD در دسترسی می‌باشد. با اجرای برنامه SETUP برنامه LSC از روی CD برنامه اجرا شده و به سادگی نصب می‌گردد (روی PC).

ب- بصورت محلی و با استفاده از کلیدهای روی دستگاه (در مدلهائی که DESPLAY هستند).

در هر دو نوع برنامه‌نویسی Connectorها و Blockها وجود دارند.

(Connectors) شامل همه اتصالات و حالتها در LOGO می‌باشند مانند ورودیها خروجیها MEMORY MARKERها و سطوح ثابت ولتاژ.

Blocks: توابعی هستند که اطلاعات ورودی را به خروجی تبدیل می‌کنند و شامل توابع منطقی (basic Function) و توابع ویژه (Special funcion) می‌باشند. BF شامل AND, OR, NAND و … می‌باشند و SFها شامل COUNTER TIMERو … می‌باشند.

ورودیها:

ورودیهای دیجیتال: تنها دارای سطح صفر و یک می‌باشند.

وردیهای آنالوگ: LOGOهای RCO, 12/34 RC, 2424/12 دارای ورودی آنالوگ می‌باشند.

ورودیهای AS-I ورودیهای IA1 تا IA2 برای ارتباط از طریق باس AS-I در LOGOهائی که اتصال AS-I را دارند مورد استفاده قرار می‌گیرند.

خروجیها:

خروجیهای LOGO از نوع دیجیتال می‌باشند و QA1 تا QA4 برای ارتباط از طریق باس AS-I با مدلهائی از LOGO که اتصال AS-I دارند مورد استفاده قرار می‌گیرند.

MEMORY BIT (MARKER)ها:

با حرف M مشخص می‌شوند. خروجیهای مجازی می‌باشند که همان مقدار ورودی را در خروجی خود دارند. در LOGO هشت عدد MARKER وجود دارد.

STARTUP FLAG:

در اولین سیکل از برنام مصرف کننده تنظیم می‌شود و متوالیاَ بعنوان STARTUP FLAG در برنامه مورد استفاده قرار می‌گیرند. همچنین M8 می‌تواند مانند دیگر MARDERها در برنامه مورد استفاده قرار گیرد.

FIXED LEVE:

با HI=1, LO=0 مشخص می‌شوند.

OPEN CONINECTOR (X):

در مواردی که نیاز به سیم‌بندی نمی‌باشد از این پایه استفادهه می‌شود.

از مزایای این برنامه این است که می‌توان انواع مدارات را طراحی و در کامپیوتر شخصی تست کرد حتی بدون داشتن LOGO.

برای برنامه‌نویسی می‌توان از دو زبان برنامه‌نویسی که در این نرم‌افزار پس از طراحی به یکدیگر تبدیل می‌شوند استفاده نمود.

BFها توابع خواصی می‌باشند که با منطقی خاص ورودی/ خروجی را بهم ارتباط می‌دهند. پایه‌های بکار رفته در این توابع شامل ورودی 1 خروجی Q یا X می‌باشند. در جایی که نیاز به سیم‌بندی پایه نباشد از X استفاده می‌شود این توابع شامل:

AND:

از لحاظ مداری ارتباط سریال تعدادی کنتاکت Normally open می‌باشند و خروجی در صورتی یک می‌شود که کلیه ورودیها یک باشند.

AND WI TH RLO:

شکل سمت چپ در این تابع خروجی در صورتی یک می‌شود که همه ورودیها باشند و حداقل یک ورودی در سیکل قبلی حالت صفر داشته باشد.

NAND:

شامل اتصال موازی تعداد کنتاکت Normaly clos می‌باشد و خروجی زمانی یک می‌شود که همه ورودیها یک باشند.

AND WI TH RLO:

خروجی ANND زمانی یک می‌شود که حداقل یک وروی حالت صفر داشته باشد و همه ورودیها در سیکل قبل یک باشند.

OR:

شامل اتصال موازی تعداد کنتاکت Normaly open می‌باشد و خروجی زمانی یک می‌شود که حداقل یکی از ورودیها یک باشند.


تاریخ ارسال: یکشنبه 3 بهمن 1395 ساعت 16:30 | نویسنده: saeed | چاپ مطلب 0 نظر
( تعداد کل: 41 )
   1      2     3     4     5      ...      9   >>
صفحات